Metamath Proof Explorer


Theorem afv0nbfvbi

Description: The function's value at an argument is an element of a set if and only if the value of the alternative function at this argument is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afv0nbfvbi BF'''ABFAB

Proof

Step Hyp Ref Expression
1 afvvfveq F'''ABF'''A=FA
2 eleq1 F'''A=FAF'''ABFAB
3 2 biimpd F'''A=FAF'''ABFAB
4 1 3 mpcom F'''ABFAB
5 elnelne2 FABBFA
6 5 ancoms BFABFA
7 fvfundmfvn0 FAAdomFFunFA
8 df-dfat FdefAtAAdomFFunFA
9 afvfundmfveq FdefAtAF'''A=FA
10 8 9 sylbir AdomFFunFAF'''A=FA
11 eleq1 FA=F'''AFABF'''AB
12 11 eqcoms F'''A=FAFABF'''AB
13 12 biimpd F'''A=FAFABF'''AB
14 6 7 10 13 4syl BFABFABF'''AB
15 14 ex BFABFABF'''AB
16 15 pm2.43d BFABF'''AB
17 4 16 impbid2 BF'''ABFAB