Metamath Proof Explorer


Theorem afv2ndeffv0

Description: If the alternate function value at an argument is undefined, i.e., not in the range of the function, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2ndeffv0 F''''AranFFA=

Proof

Step Hyp Ref Expression
1 df-nel F''''AranF¬F''''AranF
2 dfatafv2rnb FdefAtAF''''AranF
3 df-dfat FdefAtAAdomFFunFA
4 2 3 bitr3i F''''AranFAdomFFunFA
5 4 notbii ¬F''''AranF¬AdomFFunFA
6 ianor ¬AdomFFunFA¬AdomF¬FunFA
7 1 5 6 3bitri F''''AranF¬AdomF¬FunFA
8 ndmfv ¬AdomFFA=
9 nfunsn ¬FunFAFA=
10 8 9 jaoi ¬AdomF¬FunFAFA=
11 7 10 sylbi F''''AranFFA=