Metamath Proof Explorer


Theorem alephon

Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Assertion alephon A On

Proof

Step Hyp Ref Expression
1 alephfnon Fn On
2 fveq2 x = x =
3 2 eleq1d x = x On On
4 fveq2 x = y x = y
5 4 eleq1d x = y x On y On
6 fveq2 x = suc y x = suc y
7 6 eleq1d x = suc y x On suc y On
8 aleph0 = ω
9 omelon ω On
10 8 9 eqeltri On
11 alephsuc y On suc y = har y
12 harcl har y On
13 11 12 eqeltrdi y On suc y On
14 13 a1d y On y On suc y On
15 vex x V
16 iunon x V y x y On y x y On
17 15 16 mpan y x y On y x y On
18 alephlim x V Lim x x = y x y
19 15 18 mpan Lim x x = y x y
20 19 eleq1d Lim x x On y x y On
21 17 20 syl5ibr Lim x y x y On x On
22 3 5 7 5 10 14 21 tfinds y On y On
23 22 rgen y On y On
24 ffnfv : On On Fn On y On y On
25 1 23 24 mpbir2an : On On
26 0elon On
27 25 26 f0cli A On