Metamath Proof Explorer


Theorem alephon

Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Assertion alephon AOn

Proof

Step Hyp Ref Expression
1 alephfnon FnOn
2 fveq2 x=x=
3 2 eleq1d x=xOnOn
4 fveq2 x=yx=y
5 4 eleq1d x=yxOnyOn
6 fveq2 x=sucyx=sucy
7 6 eleq1d x=sucyxOnsucyOn
8 aleph0 =ω
9 omelon ωOn
10 8 9 eqeltri On
11 alephsuc yOnsucy=hary
12 harcl haryOn
13 11 12 eqeltrdi yOnsucyOn
14 13 a1d yOnyOnsucyOn
15 vex xV
16 iunon xVyxyOnyxyOn
17 15 16 mpan yxyOnyxyOn
18 alephlim xVLimxx=yxy
19 15 18 mpan Limxx=yxy
20 19 eleq1d LimxxOnyxyOn
21 17 20 imbitrrid LimxyxyOnxOn
22 3 5 7 5 10 14 21 tfinds yOnyOn
23 22 rgen yOnyOn
24 ffnfv :OnOnFnOnyOnyOn
25 1 23 24 mpbir2an :OnOn
26 0elon On
27 25 26 f0cli AOn