| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alginv.1 |  | 
						
							| 2 |  | alginv.2 |  | 
						
							| 3 |  | alginv.3 |  | 
						
							| 4 |  | 2fveq3 |  | 
						
							| 5 | 4 | eqeq1d |  | 
						
							| 6 | 5 | imbi2d |  | 
						
							| 7 |  | 2fveq3 |  | 
						
							| 8 | 7 | eqeq1d |  | 
						
							| 9 | 8 | imbi2d |  | 
						
							| 10 |  | 2fveq3 |  | 
						
							| 11 | 10 | eqeq1d |  | 
						
							| 12 | 11 | imbi2d |  | 
						
							| 13 |  | 2fveq3 |  | 
						
							| 14 | 13 | eqeq1d |  | 
						
							| 15 | 14 | imbi2d |  | 
						
							| 16 |  | eqidd |  | 
						
							| 17 |  | nn0uz |  | 
						
							| 18 |  | 0zd |  | 
						
							| 19 |  | id |  | 
						
							| 20 | 2 | a1i |  | 
						
							| 21 | 17 1 18 19 20 | algrp1 |  | 
						
							| 22 | 21 | fveq2d |  | 
						
							| 23 | 17 1 18 19 20 | algrf |  | 
						
							| 24 | 23 | ffvelcdmda |  | 
						
							| 25 |  | 2fveq3 |  | 
						
							| 26 |  | fveq2 |  | 
						
							| 27 | 25 26 | eqeq12d |  | 
						
							| 28 | 27 3 | vtoclga |  | 
						
							| 29 | 24 28 | syl |  | 
						
							| 30 | 22 29 | eqtrd |  | 
						
							| 31 | 30 | eqeq1d |  | 
						
							| 32 | 31 | biimprd |  | 
						
							| 33 | 32 | expcom |  | 
						
							| 34 | 33 | a2d |  | 
						
							| 35 | 6 9 12 15 16 34 | nn0ind |  | 
						
							| 36 | 35 | impcom |  |