Metamath Proof Explorer


Theorem alginv

Description: If I is an invariant of F , then its value is unchanged after any number of iterations of F . (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Hypotheses alginv.1 R=seq0F1st0×A
alginv.2 F:SS
alginv.3 xSIFx=Ix
Assertion alginv ASK0IRK=IR0

Proof

Step Hyp Ref Expression
1 alginv.1 R=seq0F1st0×A
2 alginv.2 F:SS
3 alginv.3 xSIFx=Ix
4 2fveq3 z=0IRz=IR0
5 4 eqeq1d z=0IRz=IR0IR0=IR0
6 5 imbi2d z=0ASIRz=IR0ASIR0=IR0
7 2fveq3 z=kIRz=IRk
8 7 eqeq1d z=kIRz=IR0IRk=IR0
9 8 imbi2d z=kASIRz=IR0ASIRk=IR0
10 2fveq3 z=k+1IRz=IRk+1
11 10 eqeq1d z=k+1IRz=IR0IRk+1=IR0
12 11 imbi2d z=k+1ASIRz=IR0ASIRk+1=IR0
13 2fveq3 z=KIRz=IRK
14 13 eqeq1d z=KIRz=IR0IRK=IR0
15 14 imbi2d z=KASIRz=IR0ASIRK=IR0
16 eqidd ASIR0=IR0
17 nn0uz 0=0
18 0zd AS0
19 id ASAS
20 2 a1i ASF:SS
21 17 1 18 19 20 algrp1 ASk0Rk+1=FRk
22 21 fveq2d ASk0IRk+1=IFRk
23 17 1 18 19 20 algrf ASR:0S
24 23 ffvelcdmda ASk0RkS
25 2fveq3 x=RkIFx=IFRk
26 fveq2 x=RkIx=IRk
27 25 26 eqeq12d x=RkIFx=IxIFRk=IRk
28 27 3 vtoclga RkSIFRk=IRk
29 24 28 syl ASk0IFRk=IRk
30 22 29 eqtrd ASk0IRk+1=IRk
31 30 eqeq1d ASk0IRk+1=IR0IRk=IR0
32 31 biimprd ASk0IRk=IR0IRk+1=IR0
33 32 expcom k0ASIRk=IR0IRk+1=IR0
34 33 a2d k0ASIRk=IR0ASIRk+1=IR0
35 6 9 12 15 16 34 nn0ind K0ASIRK=IR0
36 35 impcom ASK0IRK=IR0