Metamath Proof Explorer


Theorem altopelaltxp

Description: Alternate ordered pair membership in a Cartesian product. Note that, unlike opelxp , there is no sethood requirement here. (Contributed by Scott Fenton, 22-Mar-2012)

Ref Expression
Assertion altopelaltxp X Y A ×× B X A Y B

Proof

Step Hyp Ref Expression
1 elaltxp X Y A ×× B x A y B X Y = x y
2 reeanv x A y B x = X y = Y x A x = X y B y = Y
3 eqcom X Y = x y x y = X Y
4 vex x V
5 vex y V
6 4 5 altopth x y = X Y x = X y = Y
7 3 6 bitri X Y = x y x = X y = Y
8 7 2rexbii x A y B X Y = x y x A y B x = X y = Y
9 risset X A x A x = X
10 risset Y B y B y = Y
11 9 10 anbi12i X A Y B x A x = X y B y = Y
12 2 8 11 3bitr4i x A y B X Y = x y X A Y B
13 1 12 bitri X Y A ×× B X A Y B