Metamath Proof Explorer


Theorem altxpeq2

Description: Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012)

Ref Expression
Assertion altxpeq2 A=BC××A=C××B

Proof

Step Hyp Ref Expression
1 rexeq A=ByAz=xyyBz=xy
2 1 rexbidv A=BxCyAz=xyxCyBz=xy
3 2 abbidv A=Bz|xCyAz=xy=z|xCyBz=xy
4 df-altxp C××A=z|xCyAz=xy
5 df-altxp C××B=z|xCyBz=xy
6 3 4 5 3eqtr4g A=BC××A=C××B