Metamath Proof Explorer


Theorem angpieqvdlem2

Description: Equivalence used in angpieqvd . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses angpieqvd.angdef F=x0,y0logyx
angpieqvd.A φA
angpieqvd.B φB
angpieqvd.C φC
angpieqvd.AneB φAB
angpieqvd.BneC φBC
Assertion angpieqvdlem2 φCBAB+ABFCB=π

Proof

Step Hyp Ref Expression
1 angpieqvd.angdef F=x0,y0logyx
2 angpieqvd.A φA
3 angpieqvd.B φB
4 angpieqvd.C φC
5 angpieqvd.AneB φAB
6 angpieqvd.BneC φBC
7 4 3 subcld φCB
8 2 3 subcld φAB
9 2 3 5 subne0d φAB0
10 7 8 9 divcld φCBAB
11 6 necomd φCB
12 4 3 11 subne0d φCB0
13 7 8 12 9 divne0d φCBAB0
14 lognegb CBABCBAB0CBAB+logCBAB=π
15 10 13 14 syl2anc φCBAB+logCBAB=π
16 1 8 9 7 12 angvald φABFCB=logCBAB
17 16 eqeq1d φABFCB=πlogCBAB=π
18 15 17 bitr4d φCBAB+ABFCB=π