Metamath Proof Explorer


Theorem aovmpt4g

Description: Value of a function given by the maps-to notation, analogous to ovmpt4g . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis aovmpt4g.3 F=xA,yBC
Assertion aovmpt4g xAyBCVxFy=C

Proof

Step Hyp Ref Expression
1 aovmpt4g.3 F=xA,yBC
2 1 dmmpog CVdomF=A×B
3 opelxpi xAyBxyA×B
4 eleq2 domF=A×BxydomFxyA×B
5 3 4 imbitrrid domF=A×BxAyBxydomF
6 2 5 syl CVxAyBxydomF
7 6 impcom xAyBCVxydomF
8 7 3impa xAyBCVxydomF
9 1 mpofun FunF
10 funres FunFFunFxy
11 9 10 ax-mp FunFxy
12 df-dfat FdefAtxyxydomFFunFxy
13 aovfundmoveq FdefAtxyxFy=xFy
14 12 13 sylbir xydomFFunFxyxFy=xFy
15 8 11 14 sylancl xAyBCVxFy=xFy
16 1 ovmpt4g xAyBCVxFy=C
17 15 16 eqtrd xAyBCVxFy=C