Metamath Proof Explorer


Theorem areage0

Description: The area of a measurable region is greater than or equal to zero. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion areage0 Sdomarea0areaS

Proof

Step Hyp Ref Expression
1 areaf area:domarea0+∞
2 1 ffvelcdmi SdomareaareaS0+∞
3 elrege0 areaS0+∞areaS0areaS
4 3 simprbi areaS0+∞0areaS
5 2 4 syl Sdomarea0areaS