Metamath Proof Explorer


Theorem asclcntr

Description: The algebra scalars function maps into the center of the algebra. Equivalently, a lifted scalar is a center of the algebra. (Contributed by Zhi Wang, 11-Sep-2025)

Ref Expression
Hypotheses asclelbas.a A = algSc W
asclelbas.f F = Scalar W
asclelbas.b B = Base F
asclelbas.w φ W AssAlg
asclelbas.c φ C B
asclcntr.m M = mulGrp W
Assertion asclcntr φ A C Cntr M

Proof

Step Hyp Ref Expression
1 asclelbas.a A = algSc W
2 asclelbas.f F = Scalar W
3 asclelbas.b B = Base F
4 asclelbas.w φ W AssAlg
5 asclelbas.c φ C B
6 asclcntr.m M = mulGrp W
7 eqid Base W = Base W
8 eqid Cntr M = Cntr M
9 1 2 3 4 5 asclelbas φ A C Base W
10 4 adantr φ x Base W W AssAlg
11 5 adantr φ x Base W C B
12 simpr φ x Base W x Base W
13 eqid W = W
14 eqid W = W
15 1 2 3 7 13 14 asclmul1 W AssAlg C B x Base W A C W x = C W x
16 1 2 3 7 13 14 asclmul2 W AssAlg C B x Base W x W A C = C W x
17 15 16 eqtr4d W AssAlg C B x Base W A C W x = x W A C
18 10 11 12 17 syl3anc φ x Base W A C W x = x W A C
19 7 6 8 9 18 elmgpcntrd φ A C Cntr M