Metamath Proof Explorer


Theorem asclrhm

Description: The scalar injection is a ring homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015)

Ref Expression
Hypotheses asclrhm.a A=algScW
asclrhm.f F=ScalarW
Assertion asclrhm WAssAlgAFRingHomW

Proof

Step Hyp Ref Expression
1 asclrhm.a A=algScW
2 asclrhm.f F=ScalarW
3 eqid BaseF=BaseF
4 eqid 1F=1F
5 eqid 1W=1W
6 eqid F=F
7 eqid W=W
8 2 assasca WAssAlgFRing
9 assaring WAssAlgWRing
10 assalmod WAssAlgWLMod
11 1 2 10 9 ascl1 WAssAlgA1F=1W
12 1 2 3 7 6 ascldimul WAssAlgxBaseFyBaseFAxFy=AxWAy
13 12 3expb WAssAlgxBaseFyBaseFAxFy=AxWAy
14 1 2 9 10 asclghm WAssAlgAFGrpHomW
15 3 4 5 6 7 8 9 11 13 14 isrhm2d WAssAlgAFRingHomW