| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ascldimul.a |
|
| 2 |
|
ascldimul.f |
|
| 3 |
|
ascldimul.k |
|
| 4 |
|
ascldimul.t |
|
| 5 |
|
ascldimul.s |
|
| 6 |
|
assalmod |
|
| 7 |
6
|
3ad2ant1 |
|
| 8 |
|
simp2 |
|
| 9 |
|
simp3 |
|
| 10 |
|
assaring |
|
| 11 |
10
|
3ad2ant1 |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 13
|
ringidcl |
|
| 15 |
11 14
|
syl |
|
| 16 |
|
eqid |
|
| 17 |
12 2 16 3 5
|
lmodvsass |
|
| 18 |
7 8 9 15 17
|
syl13anc |
|
| 19 |
2
|
lmodring |
|
| 20 |
6 19
|
syl |
|
| 21 |
3 5
|
ringcl |
|
| 22 |
20 21
|
syl3an1 |
|
| 23 |
1 2 3 16 13
|
asclval |
|
| 24 |
22 23
|
syl |
|
| 25 |
1 2 10 6 3 12
|
asclf |
|
| 26 |
25
|
ffvelcdmda |
|
| 27 |
26
|
3adant2 |
|
| 28 |
1 2 3 12 4 16
|
asclmul1 |
|
| 29 |
27 28
|
syld3an3 |
|
| 30 |
1 2 3 16 13
|
asclval |
|
| 31 |
30
|
3ad2ant3 |
|
| 32 |
31
|
oveq2d |
|
| 33 |
29 32
|
eqtrd |
|
| 34 |
18 24 33
|
3eqtr4d |
|