Metamath Proof Explorer


Theorem ascldimulOLD

Description: Obsolete version of ascldimul as of 5-Nov-2023. (Contributed by Mario Carneiro, 8-Mar-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ascldimul.a A = algSc W
ascldimul.f F = Scalar W
ascldimul.k K = Base F
ascldimul.t × ˙ = W
ascldimul.s · ˙ = F
Assertion ascldimulOLD W AssAlg R K S K A R · ˙ S = A R × ˙ A S

Proof

Step Hyp Ref Expression
1 ascldimul.a A = algSc W
2 ascldimul.f F = Scalar W
3 ascldimul.k K = Base F
4 ascldimul.t × ˙ = W
5 ascldimul.s · ˙ = F
6 assaring W AssAlg W Ring
7 eqid Base W = Base W
8 eqid 1 W = 1 W
9 7 8 ringidcl W Ring 1 W Base W
10 6 9 syl W AssAlg 1 W Base W
11 7 4 8 ringlidm W Ring 1 W Base W 1 W × ˙ 1 W = 1 W
12 6 10 11 syl2anc W AssAlg 1 W × ˙ 1 W = 1 W
13 12 oveq2d W AssAlg S W 1 W × ˙ 1 W = S W 1 W
14 13 oveq2d W AssAlg R W S W 1 W × ˙ 1 W = R W S W 1 W
15 14 3ad2ant1 W AssAlg R K S K R W S W 1 W × ˙ 1 W = R W S W 1 W
16 simp1 W AssAlg R K S K W AssAlg
17 simp2 W AssAlg R K S K R K
18 10 3ad2ant1 W AssAlg R K S K 1 W Base W
19 assalmod W AssAlg W LMod
20 19 3ad2ant1 W AssAlg R K S K W LMod
21 simp3 W AssAlg R K S K S K
22 eqid W = W
23 7 2 22 3 lmodvscl W LMod S K 1 W Base W S W 1 W Base W
24 20 21 18 23 syl3anc W AssAlg R K S K S W 1 W Base W
25 7 2 3 22 4 assaass W AssAlg R K 1 W Base W S W 1 W Base W R W 1 W × ˙ S W 1 W = R W 1 W × ˙ S W 1 W
26 16 17 18 24 25 syl13anc W AssAlg R K S K R W 1 W × ˙ S W 1 W = R W 1 W × ˙ S W 1 W
27 7 2 3 22 4 assaassr W AssAlg S K 1 W Base W 1 W Base W 1 W × ˙ S W 1 W = S W 1 W × ˙ 1 W
28 16 21 18 18 27 syl13anc W AssAlg R K S K 1 W × ˙ S W 1 W = S W 1 W × ˙ 1 W
29 28 oveq2d W AssAlg R K S K R W 1 W × ˙ S W 1 W = R W S W 1 W × ˙ 1 W
30 26 29 eqtrd W AssAlg R K S K R W 1 W × ˙ S W 1 W = R W S W 1 W × ˙ 1 W
31 7 2 22 3 5 lmodvsass W LMod R K S K 1 W Base W R · ˙ S W 1 W = R W S W 1 W
32 20 17 21 18 31 syl13anc W AssAlg R K S K R · ˙ S W 1 W = R W S W 1 W
33 15 30 32 3eqtr4rd W AssAlg R K S K R · ˙ S W 1 W = R W 1 W × ˙ S W 1 W
34 2 assasca W AssAlg F CRing
35 crngring F CRing F Ring
36 34 35 syl W AssAlg F Ring
37 3 5 ringcl F Ring R K S K R · ˙ S K
38 36 37 syl3an1 W AssAlg R K S K R · ˙ S K
39 1 2 3 22 8 asclval R · ˙ S K A R · ˙ S = R · ˙ S W 1 W
40 38 39 syl W AssAlg R K S K A R · ˙ S = R · ˙ S W 1 W
41 1 2 3 22 8 asclval R K A R = R W 1 W
42 17 41 syl W AssAlg R K S K A R = R W 1 W
43 1 2 3 22 8 asclval S K A S = S W 1 W
44 21 43 syl W AssAlg R K S K A S = S W 1 W
45 42 44 oveq12d W AssAlg R K S K A R × ˙ A S = R W 1 W × ˙ S W 1 W
46 33 40 45 3eqtr4d W AssAlg R K S K A R · ˙ S = A R × ˙ A S