Metamath Proof Explorer


Theorem atanord

Description: The arctangent function is strictly increasing. (Contributed by Mario Carneiro, 5-Apr-2015)

Ref Expression
Assertion atanord ABA<BarctanA<arctanB

Proof

Step Hyp Ref Expression
1 atanbnd AarctanAπ2π2
2 atanbnd BarctanBπ2π2
3 tanord arctanAπ2π2arctanBπ2π2arctanA<arctanBtanarctanA<tanarctanB
4 1 2 3 syl2an ABarctanA<arctanBtanarctanA<tanarctanB
5 atanre AAdomarctan
6 tanatan AdomarctantanarctanA=A
7 5 6 syl AtanarctanA=A
8 atanre BBdomarctan
9 tanatan BdomarctantanarctanB=B
10 8 9 syl BtanarctanB=B
11 7 10 breqan12d ABtanarctanA<tanarctanBA<B
12 4 11 bitr2d ABA<BarctanA<arctanB