Metamath Proof Explorer


Theorem atmod1i2

Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses atmod.b B = Base K
atmod.l ˙ = K
atmod.j ˙ = join K
atmod.m ˙ = meet K
atmod.a A = Atoms K
Assertion atmod1i2 K HL P A X B Y B X ˙ Y X ˙ P ˙ Y = X ˙ P ˙ Y

Proof

Step Hyp Ref Expression
1 atmod.b B = Base K
2 atmod.l ˙ = K
3 atmod.j ˙ = join K
4 atmod.m ˙ = meet K
5 atmod.a A = Atoms K
6 simpl K HL P A X B Y B K HL
7 simpr2 K HL P A X B Y B X B
8 simpr1 K HL P A X B Y B P A
9 eqid pmap K = pmap K
10 eqid + 𝑃 K = + 𝑃 K
11 1 3 5 9 10 pmapjat1 K HL X B P A pmap K X ˙ P = pmap K X + 𝑃 K pmap K P
12 6 7 8 11 syl3anc K HL P A X B Y B pmap K X ˙ P = pmap K X + 𝑃 K pmap K P
13 1 5 atbase P A P B
14 8 13 syl K HL P A X B Y B P B
15 simpr3 K HL P A X B Y B Y B
16 1 2 3 4 9 10 hlmod1i K HL X B P B Y B X ˙ Y pmap K X ˙ P = pmap K X + 𝑃 K pmap K P X ˙ P ˙ Y = X ˙ P ˙ Y
17 6 7 14 15 16 syl13anc K HL P A X B Y B X ˙ Y pmap K X ˙ P = pmap K X + 𝑃 K pmap K P X ˙ P ˙ Y = X ˙ P ˙ Y
18 12 17 mpan2d K HL P A X B Y B X ˙ Y X ˙ P ˙ Y = X ˙ P ˙ Y
19 18 3impia K HL P A X B Y B X ˙ Y X ˙ P ˙ Y = X ˙ P ˙ Y
20 19 eqcomd K HL P A X B Y B X ˙ Y X ˙ P ˙ Y = X ˙ P ˙ Y