Metamath Proof Explorer


Theorem atmod1i2

Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses atmod.b B=BaseK
atmod.l ˙=K
atmod.j ˙=joinK
atmod.m ˙=meetK
atmod.a A=AtomsK
Assertion atmod1i2 KHLPAXBYBX˙YX˙P˙Y=X˙P˙Y

Proof

Step Hyp Ref Expression
1 atmod.b B=BaseK
2 atmod.l ˙=K
3 atmod.j ˙=joinK
4 atmod.m ˙=meetK
5 atmod.a A=AtomsK
6 simpl KHLPAXBYBKHL
7 simpr2 KHLPAXBYBXB
8 simpr1 KHLPAXBYBPA
9 eqid pmapK=pmapK
10 eqid +𝑃K=+𝑃K
11 1 3 5 9 10 pmapjat1 KHLXBPApmapKX˙P=pmapKX+𝑃KpmapKP
12 6 7 8 11 syl3anc KHLPAXBYBpmapKX˙P=pmapKX+𝑃KpmapKP
13 1 5 atbase PAPB
14 8 13 syl KHLPAXBYBPB
15 simpr3 KHLPAXBYBYB
16 1 2 3 4 9 10 hlmod1i KHLXBPBYBX˙YpmapKX˙P=pmapKX+𝑃KpmapKPX˙P˙Y=X˙P˙Y
17 6 7 14 15 16 syl13anc KHLPAXBYBX˙YpmapKX˙P=pmapKX+𝑃KpmapKPX˙P˙Y=X˙P˙Y
18 12 17 mpan2d KHLPAXBYBX˙YX˙P˙Y=X˙P˙Y
19 18 3impia KHLPAXBYBX˙YX˙P˙Y=X˙P˙Y
20 19 eqcomd KHLPAXBYBX˙YX˙P˙Y=X˙P˙Y