Metamath Proof Explorer


Theorem ax6e2ndeq

Description: "At least two sets exist" expressed in the form of dtru is logically equivalent to the same expressed in a form similar to ax6e if dtru is false implies u = v . ax6e2ndeq is derived from ax6e2ndeqVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax6e2ndeq ¬xx=yu=vxyx=uy=v

Proof

Step Hyp Ref Expression
1 ax6e2nd ¬xx=yxyx=uy=v
2 ax6e2eq xx=yu=vxyx=uy=v
3 1 a1d ¬xx=yu=vxyx=uy=v
4 2 3 pm2.61i u=vxyx=uy=v
5 1 4 jaoi ¬xx=yu=vxyx=uy=v
6 olc u=v¬xx=yu=v
7 6 a1d u=vxyx=uy=v¬xx=yu=v
8 excom xyx=uy=vyxx=uy=v
9 neeq1 x=uxvuv
10 9 biimprcd uvx=uxv
11 10 adantrd uvx=uy=vxv
12 simpr x=uy=vy=v
13 12 a1i uvx=uy=vy=v
14 neeq2 y=vxyxv
15 14 biimprcd xvy=vxy
16 11 13 15 syl6c uvx=uy=vxy
17 sp xx=yx=y
18 17 necon3ai xy¬xx=y
19 16 18 syl6 uvx=uy=v¬xx=y
20 19 eximdv uvxx=uy=vx¬xx=y
21 nfnae x¬xx=y
22 21 19.9 x¬xx=y¬xx=y
23 20 22 imbitrdi uvxx=uy=v¬xx=y
24 23 eximdv uvyxx=uy=vy¬xx=y
25 8 24 biimtrid uvxyx=uy=vy¬xx=y
26 nfnae y¬xx=y
27 26 19.9 y¬xx=y¬xx=y
28 25 27 imbitrdi uvxyx=uy=v¬xx=y
29 orc ¬xx=y¬xx=yu=v
30 28 29 syl6 uvxyx=uy=v¬xx=yu=v
31 7 30 pm2.61ine xyx=uy=v¬xx=yu=v
32 5 31 impbii ¬xx=yu=vxyx=uy=v