Description: "At least two sets exist" expressed in the form of dtru is logically equivalent to the same expressed in a form similar to ax6e if dtru is false implies u = v . ax6e2ndeq is derived from ax6e2ndeqVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax6e2ndeq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6e2nd | |
|
2 | ax6e2eq | |
|
3 | 1 | a1d | |
4 | 2 3 | pm2.61i | |
5 | 1 4 | jaoi | |
6 | olc | |
|
7 | 6 | a1d | |
8 | excom | |
|
9 | neeq1 | |
|
10 | 9 | biimprcd | |
11 | 10 | adantrd | |
12 | simpr | |
|
13 | 12 | a1i | |
14 | neeq2 | |
|
15 | 14 | biimprcd | |
16 | 11 13 15 | syl6c | |
17 | sp | |
|
18 | 17 | necon3ai | |
19 | 16 18 | syl6 | |
20 | 19 | eximdv | |
21 | nfnae | |
|
22 | 21 | 19.9 | |
23 | 20 22 | imbitrdi | |
24 | 23 | eximdv | |
25 | 8 24 | biimtrid | |
26 | nfnae | |
|
27 | 26 | 19.9 | |
28 | 25 27 | imbitrdi | |
29 | orc | |
|
30 | 28 29 | syl6 | |
31 | 7 30 | pm2.61ine | |
32 | 5 31 | impbii | |