Metamath Proof Explorer


Theorem axextnd

Description: A version of the Axiom of Extensionality with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 14-Aug-2003) (New usage is discouraged.)

Ref Expression
Assertion axextnd xxyxzy=z

Proof

Step Hyp Ref Expression
1 nfnae x¬xx=y
2 nfnae x¬xx=z
3 1 2 nfan x¬xx=y¬xx=z
4 nfcvf ¬xx=y_xy
5 4 adantr ¬xx=y¬xx=z_xy
6 5 nfcrd ¬xx=y¬xx=zxwy
7 nfcvf ¬xx=z_xz
8 7 adantl ¬xx=y¬xx=z_xz
9 8 nfcrd ¬xx=y¬xx=zxwz
10 6 9 nfbid ¬xx=y¬xx=zxwywz
11 elequ1 w=xwyxy
12 elequ1 w=xwzxz
13 11 12 bibi12d w=xwywzxyxz
14 13 a1i ¬xx=y¬xx=zw=xwywzxyxz
15 3 10 14 cbvald ¬xx=y¬xx=zwwywzxxyxz
16 axextg wwywzy=z
17 15 16 syl6bir ¬xx=y¬xx=zxxyxzy=z
18 19.8a y=zxy=z
19 17 18 syl6 ¬xx=y¬xx=zxxyxzxy=z
20 19 ex ¬xx=y¬xx=zxxyxzxy=z
21 ax6e xx=z
22 ax7 x=yx=zy=z
23 22 aleximi xx=yxx=zxy=z
24 21 23 mpi xx=yxy=z
25 24 a1d xx=yxxyxzxy=z
26 ax6e xx=y
27 ax7 x=zx=yz=y
28 equcomi z=yy=z
29 27 28 syl6 x=zx=yy=z
30 29 aleximi xx=zxx=yxy=z
31 26 30 mpi xx=zxy=z
32 31 a1d xx=zxxyxzxy=z
33 20 25 32 pm2.61ii xxyxzxy=z
34 33 19.35ri xxyxzy=z