Metamath Proof Explorer


Theorem axhis4-zf

Description: Derive Axiom ax-his4 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses axhil.1 U=+norm
axhil.2 UCHilOLD
axhfi.1 ih=𝑖OLDU
Assertion axhis4-zf AA00<AihA

Proof

Step Hyp Ref Expression
1 axhil.1 U=+norm
2 axhil.2 UCHilOLD
3 axhfi.1 ih=𝑖OLDU
4 df-hba =BaseSet+norm
5 1 fveq2i BaseSetU=BaseSet+norm
6 4 5 eqtr4i =BaseSetU
7 df-h0v 0=0vec+norm
8 1 fveq2i 0vecU=0vec+norm
9 7 8 eqtr4i 0=0vecU
10 6 9 3 hlipgt0 UCHilOLDAA00<AihA
11 2 10 mp3an1 AA00<AihA