Metamath Proof Explorer


Theorem axlowdimlem11

Description: Lemma for axlowdim . Calculate the value of Q at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypothesis axlowdimlem10.1 Q = I + 1 1 1 N I + 1 × 0
Assertion axlowdimlem11 Q I + 1 = 1

Proof

Step Hyp Ref Expression
1 axlowdimlem10.1 Q = I + 1 1 1 N I + 1 × 0
2 1 fveq1i Q I + 1 = I + 1 1 1 N I + 1 × 0 I + 1
3 ovex I + 1 V
4 1ex 1 V
5 3 4 fnsn I + 1 1 Fn I + 1
6 c0ex 0 V
7 6 fconst 1 N I + 1 × 0 : 1 N I + 1 0
8 ffn 1 N I + 1 × 0 : 1 N I + 1 0 1 N I + 1 × 0 Fn 1 N I + 1
9 7 8 ax-mp 1 N I + 1 × 0 Fn 1 N I + 1
10 disjdif I + 1 1 N I + 1 =
11 3 snid I + 1 I + 1
12 10 11 pm3.2i I + 1 1 N I + 1 = I + 1 I + 1
13 fvun1 I + 1 1 Fn I + 1 1 N I + 1 × 0 Fn 1 N I + 1 I + 1 1 N I + 1 = I + 1 I + 1 I + 1 1 1 N I + 1 × 0 I + 1 = I + 1 1 I + 1
14 5 9 12 13 mp3an I + 1 1 1 N I + 1 × 0 I + 1 = I + 1 1 I + 1
15 3 4 fvsn I + 1 1 I + 1 = 1
16 2 14 15 3eqtri Q I + 1 = 1