Metamath Proof Explorer


Theorem axlowdimlem8

Description: Lemma for axlowdim . Calculate the value of P at three. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypothesis axlowdimlem7.1 P = 3 1 1 N 3 × 0
Assertion axlowdimlem8 P 3 = 1

Proof

Step Hyp Ref Expression
1 axlowdimlem7.1 P = 3 1 1 N 3 × 0
2 1 fveq1i P 3 = 3 1 1 N 3 × 0 3
3 3ex 3 V
4 negex 1 V
5 3 4 fnsn 3 1 Fn 3
6 c0ex 0 V
7 6 fconst 1 N 3 × 0 : 1 N 3 0
8 ffn 1 N 3 × 0 : 1 N 3 0 1 N 3 × 0 Fn 1 N 3
9 7 8 ax-mp 1 N 3 × 0 Fn 1 N 3
10 disjdif 3 1 N 3 =
11 3 snid 3 3
12 10 11 pm3.2i 3 1 N 3 = 3 3
13 fvun1 3 1 Fn 3 1 N 3 × 0 Fn 1 N 3 3 1 N 3 = 3 3 3 1 1 N 3 × 0 3 = 3 1 3
14 5 9 12 13 mp3an 3 1 1 N 3 × 0 3 = 3 1 3
15 3 4 fvsn 3 1 3 = 1
16 2 14 15 3eqtri P 3 = 1