Metamath Proof Explorer


Theorem axmulcom

Description: Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom be used later. Instead, use mulcom . (Contributed by NM, 31-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion axmulcom ABAB=BA

Proof

Step Hyp Ref Expression
1 dfcnqs =𝑹×𝑹/E-1
2 mulcnsrec x𝑹y𝑹z𝑹w𝑹xyE-1zwE-1=x𝑹z+𝑹-1𝑹𝑹y𝑹wy𝑹z+𝑹x𝑹wE-1
3 mulcnsrec z𝑹w𝑹x𝑹y𝑹zwE-1xyE-1=z𝑹x+𝑹-1𝑹𝑹w𝑹yw𝑹x+𝑹z𝑹yE-1
4 mulcomsr x𝑹z=z𝑹x
5 mulcomsr y𝑹w=w𝑹y
6 5 oveq2i -1𝑹𝑹y𝑹w=-1𝑹𝑹w𝑹y
7 4 6 oveq12i x𝑹z+𝑹-1𝑹𝑹y𝑹w=z𝑹x+𝑹-1𝑹𝑹w𝑹y
8 mulcomsr y𝑹z=z𝑹y
9 mulcomsr x𝑹w=w𝑹x
10 8 9 oveq12i y𝑹z+𝑹x𝑹w=z𝑹y+𝑹w𝑹x
11 addcomsr z𝑹y+𝑹w𝑹x=w𝑹x+𝑹z𝑹y
12 10 11 eqtri y𝑹z+𝑹x𝑹w=w𝑹x+𝑹z𝑹y
13 1 2 3 7 12 ecovcom ABAB=BA