Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 4-Jan-2002) (Proof shortened by Mario Carneiro, 10-Dec-2016) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axpowndlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axpowndlem3 | |
|
2 | 1 | ax-gen | |
3 | nfnae | |
|
4 | nfnae | |
|
5 | 3 4 | nfan | |
6 | nfcvf | |
|
7 | 6 | adantr | |
8 | nfcvd | |
|
9 | 7 8 | nfeqd | |
10 | 9 | nfnd | |
11 | nfnae | |
|
12 | nfnae | |
|
13 | 11 12 | nfan | |
14 | nfv | |
|
15 | nfnae | |
|
16 | nfnae | |
|
17 | 15 16 | nfan | |
18 | 7 8 | nfeld | |
19 | 17 18 | nfexd | |
20 | nfcvf | |
|
21 | 20 | adantl | |
22 | 7 21 | nfeld | |
23 | 14 22 | nfald | |
24 | 19 23 | nfimd | |
25 | 13 24 | nfald | |
26 | 8 7 | nfeld | |
27 | 25 26 | nfimd | |
28 | 14 27 | nfald | |
29 | 13 28 | nfexd | |
30 | 10 29 | nfimd | |
31 | equequ2 | |
|
32 | 31 | notbid | |
33 | 32 | adantl | |
34 | nfcvd | |
|
35 | nfcvf2 | |
|
36 | 35 | adantr | |
37 | 34 36 | nfeqd | |
38 | 13 37 | nfan1 | |
39 | nfcvd | |
|
40 | nfcvf2 | |
|
41 | 40 | adantl | |
42 | 39 41 | nfeqd | |
43 | 17 42 | nfan1 | |
44 | elequ2 | |
|
45 | 44 | adantl | |
46 | 43 45 | exbid | |
47 | biidd | |
|
48 | 47 | a1i | |
49 | 5 22 48 | cbvald | |
50 | 49 | adantr | |
51 | 46 50 | imbi12d | |
52 | 38 51 | albid | |
53 | elequ1 | |
|
54 | 53 | adantl | |
55 | 52 54 | imbi12d | |
56 | 55 | ex | |
57 | 5 27 56 | cbvald | |
58 | 13 57 | exbid | |
59 | 58 | adantr | |
60 | 33 59 | imbi12d | |
61 | 60 | ex | |
62 | 5 30 61 | cbvald | |
63 | 2 62 | mpbii | |
64 | 63 | 19.21bi | |
65 | 64 | ex | |