Metamath Proof Explorer


Theorem axpowndlem3

Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 4-Jan-2002) (Revised by Mario Carneiro, 10-Dec-2016) (Proof shortened by Wolf Lammen, 10-Jun-2019) (New usage is discouraged.)

Ref Expression
Assertion axpowndlem3 ¬x=yxyxzxyyxzyx

Proof

Step Hyp Ref Expression
1 sp xx=yx=y
2 p0ex V
3 eleq2 x=wxw
4 3 imbi2d x=w=wxw=w
5 4 albidv x=ww=wxww=w
6 2 5 spcev ww=wxww=wx
7 0ex V
8 7 snid
9 eleq1 w=w
10 8 9 mpbiri w=w
11 6 10 mpg xww=wx
12 neq0 ¬w=xxw
13 12 con1bii ¬xxww=
14 13 imbi1i ¬xxwwxw=wx
15 14 albii w¬xxwwxww=wx
16 15 exbii xw¬xxwwxxww=wx
17 11 16 mpbir xw¬xxwwx
18 nfnae x¬xx=y
19 nfnae y¬xx=y
20 nfcvf2 ¬xx=y_yx
21 nfcvd ¬xx=y_yw
22 20 21 nfeld ¬xx=yyxw
23 18 22 nfexd ¬xx=yyxxw
24 23 nfnd ¬xx=yy¬xxw
25 21 20 nfeld ¬xx=yywx
26 24 25 nfimd ¬xx=yy¬xxwwx
27 nfeqf2 ¬xx=yxw=y
28 18 27 nfan1 x¬xx=yw=y
29 elequ2 w=yxwxy
30 29 adantl ¬xx=yw=yxwxy
31 28 30 exbid ¬xx=yw=yxxwxxy
32 31 notbid ¬xx=yw=y¬xxw¬xxy
33 elequ1 w=ywxyx
34 33 adantl ¬xx=yw=ywxyx
35 32 34 imbi12d ¬xx=yw=y¬xxwwx¬xxyyx
36 35 ex ¬xx=yw=y¬xxwwx¬xxyyx
37 19 26 36 cbvald ¬xx=yw¬xxwwxy¬xxyyx
38 18 37 exbid ¬xx=yxw¬xxwwxxy¬xxyyx
39 17 38 mpbii ¬xx=yxy¬xxyyx
40 nfae xxx=z
41 nfae yxx=z
42 axc11r xx=zz¬xyx¬xy
43 alnex z¬xy¬zxy
44 alnex x¬xy¬xxy
45 42 43 44 3imtr3g xx=z¬zxy¬xxy
46 nd3 xx=z¬yxz
47 46 pm2.21d xx=zyxz¬xxy
48 45 47 jad xx=zzxyyxz¬xxy
49 48 spsd xx=zxzxyyxz¬xxy
50 49 imim1d xx=z¬xxyyxxzxyyxzyx
51 41 50 alimd xx=zy¬xxyyxyxzxyyxzyx
52 40 51 eximd xx=zxy¬xxyyxxyxzxyyxzyx
53 39 52 syl5com ¬xx=yxx=zxyxzxyyxzyx
54 axpowndlem2 ¬xx=y¬xx=zxyxzxyyxzyx
55 53 54 pm2.61d ¬xx=yxyxzxyyxzyx
56 1 55 nsyl5 ¬x=yxyxzxyyxzyx