Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 4-Jan-2002) (Revised by Mario Carneiro, 10-Dec-2016) (Proof shortened by Wolf Lammen, 10-Jun-2019) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axpowndlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp | |
|
2 | p0ex | |
|
3 | eleq2 | |
|
4 | 3 | imbi2d | |
5 | 4 | albidv | |
6 | 2 5 | spcev | |
7 | 0ex | |
|
8 | 7 | snid | |
9 | eleq1 | |
|
10 | 8 9 | mpbiri | |
11 | 6 10 | mpg | |
12 | neq0 | |
|
13 | 12 | con1bii | |
14 | 13 | imbi1i | |
15 | 14 | albii | |
16 | 15 | exbii | |
17 | 11 16 | mpbir | |
18 | nfnae | |
|
19 | nfnae | |
|
20 | nfcvf2 | |
|
21 | nfcvd | |
|
22 | 20 21 | nfeld | |
23 | 18 22 | nfexd | |
24 | 23 | nfnd | |
25 | 21 20 | nfeld | |
26 | 24 25 | nfimd | |
27 | nfeqf2 | |
|
28 | 18 27 | nfan1 | |
29 | elequ2 | |
|
30 | 29 | adantl | |
31 | 28 30 | exbid | |
32 | 31 | notbid | |
33 | elequ1 | |
|
34 | 33 | adantl | |
35 | 32 34 | imbi12d | |
36 | 35 | ex | |
37 | 19 26 36 | cbvald | |
38 | 18 37 | exbid | |
39 | 17 38 | mpbii | |
40 | nfae | |
|
41 | nfae | |
|
42 | axc11r | |
|
43 | alnex | |
|
44 | alnex | |
|
45 | 42 43 44 | 3imtr3g | |
46 | nd3 | |
|
47 | 46 | pm2.21d | |
48 | 45 47 | jad | |
49 | 48 | spsd | |
50 | 49 | imim1d | |
51 | 41 50 | alimd | |
52 | 40 51 | eximd | |
53 | 39 52 | syl5com | |
54 | axpowndlem2 | |
|
55 | 53 54 | pm2.61d | |
56 | 1 55 | nsyl5 | |