Description: Lemma for axpr . The second element of the pair is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023) (Revised by BJ, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | axprlem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-nul | |
|
2 | nfa1 | |
|
3 | nfv | |
|
4 | 2 3 | nfan | |
5 | pm2.21 | |
|
6 | 5 | alimi | |
7 | 6 | adantr | |
8 | df-ral | |
|
9 | 7 8 | sylibr | |
10 | sp | |
|
11 | 10 | ad2antrl | |
12 | 9 11 | mpd | |
13 | simpl | |
|
14 | alnex | |
|
15 | 13 14 | sylib | |
16 | simprr | |
|
17 | ifpfal | |
|
18 | 17 | biimpar | |
19 | 15 16 18 | syl2anc | |
20 | 12 19 | jca | |
21 | 20 | expcom | |
22 | 4 21 | eximd | |
23 | 1 22 | mpi | |