Metamath Proof Explorer


Theorem axprlem5

Description: Lemma for axpr . The second element of the pair is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023) (Revised by BJ, 13-Aug-2023)

Ref Expression
Assertion axprlem5 snst¬tnspw=ysspif-nnsw=xw=y

Proof

Step Hyp Ref Expression
1 ax-nul sn¬ns
2 nfa1 ssnst¬tnsp
3 nfv sw=y
4 2 3 nfan ssnst¬tnspw=y
5 pm2.21 ¬nsnst¬tn
6 5 alimi n¬nsnnst¬tn
7 6 adantr n¬nssnst¬tnspw=ynnst¬tn
8 df-ral nst¬tnnnst¬tn
9 7 8 sylibr n¬nssnst¬tnspw=ynst¬tn
10 sp snst¬tnspnst¬tnsp
11 10 ad2antrl n¬nssnst¬tnspw=ynst¬tnsp
12 9 11 mpd n¬nssnst¬tnspw=ysp
13 simpl n¬nssnst¬tnspw=yn¬ns
14 alnex n¬ns¬nns
15 13 14 sylib n¬nssnst¬tnspw=y¬nns
16 simprr n¬nssnst¬tnspw=yw=y
17 ifpfal ¬nnsif-nnsw=xw=yw=y
18 17 biimpar ¬nnsw=yif-nnsw=xw=y
19 15 16 18 syl2anc n¬nssnst¬tnspw=yif-nnsw=xw=y
20 12 19 jca n¬nssnst¬tnspw=yspif-nnsw=xw=y
21 20 expcom snst¬tnspw=yn¬nsspif-nnsw=xw=y
22 4 21 eximd snst¬tnspw=ysn¬nssspif-nnsw=xw=y
23 1 22 mpi snst¬tnspw=ysspif-nnsw=xw=y