Metamath Proof Explorer


Theorem axsegconlem8

Description: Lemma for axsegcon . Show that a particular mapping generates a point. (Contributed by Scott Fenton, 18-Sep-2013)

Ref Expression
Hypotheses axsegconlem2.1 S = p = 1 N A p B p 2
axsegconlem7.2 T = p = 1 N C p D p 2
axsegconlem8.3 F = k 1 N S + T B k T A k S
Assertion axsegconlem8 A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N F 𝔼 N

Proof

Step Hyp Ref Expression
1 axsegconlem2.1 S = p = 1 N A p B p 2
2 axsegconlem7.2 T = p = 1 N C p D p 2
3 axsegconlem8.3 F = k 1 N S + T B k T A k S
4 1 axsegconlem4 A 𝔼 N B 𝔼 N S
5 4 3adant3 A 𝔼 N B 𝔼 N A B S
6 5 ad2antrr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N k 1 N S
7 2 axsegconlem4 C 𝔼 N D 𝔼 N T
8 7 ad2antlr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N k 1 N T
9 6 8 readdcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N k 1 N S + T
10 simpl2 A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N B 𝔼 N
11 fveere B 𝔼 N k 1 N B k
12 10 11 sylan A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N k 1 N B k
13 9 12 remulcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N k 1 N S + T B k
14 simpl1 A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N A 𝔼 N
15 fveere A 𝔼 N k 1 N A k
16 14 15 sylan A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N k 1 N A k
17 8 16 remulcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N k 1 N T A k
18 13 17 resubcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N k 1 N S + T B k T A k
19 1 axsegconlem6 A 𝔼 N B 𝔼 N A B 0 < S
20 19 gt0ne0d A 𝔼 N B 𝔼 N A B S 0
21 20 ad2antrr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N k 1 N S 0
22 18 6 21 redivcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N k 1 N S + T B k T A k S
23 22 ralrimiva A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N k 1 N S + T B k T A k S
24 eleenn D 𝔼 N N
25 24 ad2antll A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N N
26 mptelee N k 1 N S + T B k T A k S 𝔼 N k 1 N S + T B k T A k S
27 25 26 syl A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N k 1 N S + T B k T A k S 𝔼 N k 1 N S + T B k T A k S
28 23 27 mpbird A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N k 1 N S + T B k T A k S 𝔼 N
29 3 28 eqeltrid A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N F 𝔼 N