Metamath Proof Explorer


Theorem axsegconlem9

Description: Lemma for axsegcon . Show that B F is congruent to C D . (Contributed by Scott Fenton, 19-Sep-2013)

Ref Expression
Hypotheses axsegconlem2.1 S = p = 1 N A p B p 2
axsegconlem7.2 T = p = 1 N C p D p 2
axsegconlem8.3 F = k 1 N S + T B k T A k S
Assertion axsegconlem9 A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i = 1 N B i F i 2 = i = 1 N C i D i 2

Proof

Step Hyp Ref Expression
1 axsegconlem2.1 S = p = 1 N A p B p 2
2 axsegconlem7.2 T = p = 1 N C p D p 2
3 axsegconlem8.3 F = k 1 N S + T B k T A k S
4 fveq2 k = i B k = B i
5 4 oveq2d k = i S + T B k = S + T B i
6 fveq2 k = i A k = A i
7 6 oveq2d k = i T A k = T A i
8 5 7 oveq12d k = i S + T B k T A k = S + T B i T A i
9 8 oveq1d k = i S + T B k T A k S = S + T B i T A i S
10 ovex S + T B i T A i S V
11 9 3 10 fvmpt i 1 N F i = S + T B i T A i S
12 11 adantl A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N F i = S + T B i T A i S
13 12 oveq2d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i F i = B i S + T B i T A i S
14 1 axsegconlem4 A 𝔼 N B 𝔼 N S
15 14 3adant3 A 𝔼 N B 𝔼 N A B S
16 15 ad2antrr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S
17 simpl2 A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N B 𝔼 N
18 fveere B 𝔼 N i 1 N B i
19 17 18 sylan A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i
20 16 19 remulcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S B i
21 20 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S B i
22 2 axsegconlem4 C 𝔼 N D 𝔼 N T
23 readdcl S T S + T
24 15 22 23 syl2an A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S + T
25 24 adantr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T
26 25 19 remulcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T B i
27 22 ad2antlr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T
28 simpl1 A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N A 𝔼 N
29 fveere A 𝔼 N i 1 N A i
30 28 29 sylan A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N A i
31 27 30 remulcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i
32 26 31 resubcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T B i T A i
33 32 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T B i T A i
34 16 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S
35 1 axsegconlem6 A 𝔼 N B 𝔼 N A B 0 < S
36 35 gt0ne0d A 𝔼 N B 𝔼 N A B S 0
37 36 ad2antrr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S 0
38 21 33 34 37 divsubdird A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S B i S + T B i T A i S = S B i S S + T B i T A i S
39 26 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T B i
40 31 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i
41 21 39 40 subsubd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S B i S + T B i T A i = S B i - S + T B i + T A i
42 27 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T
43 19 renegcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i
44 43 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i
45 30 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N A i
46 42 44 45 adddid A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T - B i + A i = T B i + T A i
47 44 45 addcomd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N - B i + A i = A i + B i
48 19 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i
49 45 48 negsubd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N A i + B i = A i B i
50 47 49 eqtrd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N - B i + A i = A i B i
51 50 oveq2d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T - B i + A i = T A i B i
52 25 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T
53 52 34 negsubdi2d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T - S = S S + T
54 34 42 pncan2d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T - S = T
55 54 negeqd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T - S = T
56 53 55 eqtr3d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S S + T = T
57 56 oveq1d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S S + T B i = T B i
58 34 52 48 subdird A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S S + T B i = S B i S + T B i
59 mulneg12 T B i T B i = T B i
60 42 48 59 syl2anc A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T B i = T B i
61 57 58 60 3eqtr3rd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T B i = S B i S + T B i
62 61 oveq1d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T B i + T A i = S B i - S + T B i + T A i
63 46 51 62 3eqtr3rd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S B i - S + T B i + T A i = T A i B i
64 41 63 eqtrd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S B i S + T B i T A i = T A i B i
65 64 oveq1d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S B i S + T B i T A i S = T A i B i S
66 48 34 37 divcan3d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S B i S = B i
67 66 oveq1d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S B i S S + T B i T A i S = B i S + T B i T A i S
68 38 65 67 3eqtr3rd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i S + T B i T A i S = T A i B i S
69 13 68 eqtrd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i F i = T A i B i S
70 69 oveq1d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i F i 2 = T A i B i S 2
71 30 19 resubcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N A i B i
72 27 71 remulcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i B i
73 72 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i B i
74 73 34 37 sqdivd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i B i S 2 = T A i B i 2 S 2
75 71 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N A i B i
76 42 75 sqmuld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i B i 2 = T 2 A i B i 2
77 2 axsegconlem2 C 𝔼 N D 𝔼 N T
78 77 ad2antlr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T
79 2 axsegconlem3 C 𝔼 N D 𝔼 N 0 T
80 79 ad2antlr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N 0 T
81 resqrtth T 0 T T 2 = T
82 78 80 81 syl2anc A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T 2 = T
83 82 oveq1d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T 2 A i B i 2 = T A i B i 2
84 76 83 eqtrd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i B i 2 = T A i B i 2
85 1 axsegconlem2 A 𝔼 N B 𝔼 N S
86 1 axsegconlem3 A 𝔼 N B 𝔼 N 0 S
87 resqrtth S 0 S S 2 = S
88 85 86 87 syl2anc A 𝔼 N B 𝔼 N S 2 = S
89 88 3adant3 A 𝔼 N B 𝔼 N A B S 2 = S
90 89 ad2antrr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S 2 = S
91 84 90 oveq12d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i B i 2 S 2 = T A i B i 2 S
92 70 74 91 3eqtrd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i F i 2 = T A i B i 2 S
93 92 sumeq2dv A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i = 1 N B i F i 2 = i = 1 N T A i B i 2 S
94 fzfid A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N 1 N Fin
95 77 adantl A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N T
96 95 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N T
97 71 resqcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N A i B i 2
98 97 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N A i B i 2
99 94 96 98 fsummulc2 A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N T i = 1 N A i B i 2 = i = 1 N T A i B i 2
100 99 oveq1d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N T i = 1 N A i B i 2 S = i = 1 N T A i B i 2 S
101 fveq2 p = i C p = C i
102 fveq2 p = i D p = D i
103 101 102 oveq12d p = i C p D p = C i D i
104 103 oveq1d p = i C p D p 2 = C i D i 2
105 104 cbvsumv p = 1 N C p D p 2 = i = 1 N C i D i 2
106 2 105 eqtri T = i = 1 N C i D i 2
107 fveq2 i = p A i = A p
108 fveq2 i = p B i = B p
109 107 108 oveq12d i = p A i B i = A p B p
110 109 oveq1d i = p A i B i 2 = A p B p 2
111 110 cbvsumv i = 1 N A i B i 2 = p = 1 N A p B p 2
112 111 1 eqtr4i i = 1 N A i B i 2 = S
113 106 112 oveq12i T i = 1 N A i B i 2 = i = 1 N C i D i 2 S
114 eqid i = 1 N A i B i 2 = i = 1 N A i B i 2
115 114 axsegconlem2 A 𝔼 N B 𝔼 N i = 1 N A i B i 2
116 115 3adant3 A 𝔼 N B 𝔼 N A B i = 1 N A i B i 2
117 116 adantr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i = 1 N A i B i 2
118 95 117 remulcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N T i = 1 N A i B i 2
119 118 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N T i = 1 N A i B i 2
120 eqid i = 1 N C i D i 2 = i = 1 N C i D i 2
121 120 axsegconlem2 C 𝔼 N D 𝔼 N i = 1 N C i D i 2
122 121 adantl A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i = 1 N C i D i 2
123 122 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i = 1 N C i D i 2
124 85 3adant3 A 𝔼 N B 𝔼 N A B S
125 124 adantr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S
126 125 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S
127 86 3adant3 A 𝔼 N B 𝔼 N A B 0 S
128 sqrt00 S 0 S S = 0 S = 0
129 128 necon3bid S 0 S S 0 S 0
130 124 127 129 syl2anc A 𝔼 N B 𝔼 N A B S 0 S 0
131 36 130 mpbid A 𝔼 N B 𝔼 N A B S 0
132 131 adantr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S 0
133 119 123 126 132 divmul3d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N T i = 1 N A i B i 2 S = i = 1 N C i D i 2 T i = 1 N A i B i 2 = i = 1 N C i D i 2 S
134 113 133 mpbiri A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N T i = 1 N A i B i 2 S = i = 1 N C i D i 2
135 78 97 remulcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i B i 2
136 135 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i B i 2
137 94 126 136 132 fsumdivc A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i = 1 N T A i B i 2 S = i = 1 N T A i B i 2 S
138 100 134 137 3eqtr3rd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i = 1 N T A i B i 2 S = i = 1 N C i D i 2
139 93 138 eqtrd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i = 1 N B i F i 2 = i = 1 N C i D i 2