Step |
Hyp |
Ref |
Expression |
1 |
|
axsegconlem2.1 |
|
2 |
|
axsegconlem7.2 |
|
3 |
|
axsegconlem8.3 |
|
4 |
|
fveq2 |
|
5 |
4
|
oveq2d |
|
6 |
|
fveq2 |
|
7 |
6
|
oveq2d |
|
8 |
5 7
|
oveq12d |
|
9 |
8
|
oveq1d |
|
10 |
|
ovex |
|
11 |
9 3 10
|
fvmpt |
|
12 |
11
|
adantl |
|
13 |
12
|
oveq2d |
|
14 |
1
|
axsegconlem4 |
|
15 |
14
|
3adant3 |
|
16 |
15
|
ad2antrr |
|
17 |
|
simpl2 |
|
18 |
|
fveere |
|
19 |
17 18
|
sylan |
|
20 |
16 19
|
remulcld |
|
21 |
20
|
recnd |
|
22 |
2
|
axsegconlem4 |
|
23 |
|
readdcl |
|
24 |
15 22 23
|
syl2an |
|
25 |
24
|
adantr |
|
26 |
25 19
|
remulcld |
|
27 |
22
|
ad2antlr |
|
28 |
|
simpl1 |
|
29 |
|
fveere |
|
30 |
28 29
|
sylan |
|
31 |
27 30
|
remulcld |
|
32 |
26 31
|
resubcld |
|
33 |
32
|
recnd |
|
34 |
16
|
recnd |
|
35 |
1
|
axsegconlem6 |
|
36 |
35
|
gt0ne0d |
|
37 |
36
|
ad2antrr |
|
38 |
21 33 34 37
|
divsubdird |
|
39 |
26
|
recnd |
|
40 |
31
|
recnd |
|
41 |
21 39 40
|
subsubd |
|
42 |
27
|
recnd |
|
43 |
19
|
renegcld |
|
44 |
43
|
recnd |
|
45 |
30
|
recnd |
|
46 |
42 44 45
|
adddid |
|
47 |
44 45
|
addcomd |
|
48 |
19
|
recnd |
|
49 |
45 48
|
negsubd |
|
50 |
47 49
|
eqtrd |
|
51 |
50
|
oveq2d |
|
52 |
25
|
recnd |
|
53 |
52 34
|
negsubdi2d |
|
54 |
34 42
|
pncan2d |
|
55 |
54
|
negeqd |
|
56 |
53 55
|
eqtr3d |
|
57 |
56
|
oveq1d |
|
58 |
34 52 48
|
subdird |
|
59 |
|
mulneg12 |
|
60 |
42 48 59
|
syl2anc |
|
61 |
57 58 60
|
3eqtr3rd |
|
62 |
61
|
oveq1d |
|
63 |
46 51 62
|
3eqtr3rd |
|
64 |
41 63
|
eqtrd |
|
65 |
64
|
oveq1d |
|
66 |
48 34 37
|
divcan3d |
|
67 |
66
|
oveq1d |
|
68 |
38 65 67
|
3eqtr3rd |
|
69 |
13 68
|
eqtrd |
|
70 |
69
|
oveq1d |
|
71 |
30 19
|
resubcld |
|
72 |
27 71
|
remulcld |
|
73 |
72
|
recnd |
|
74 |
73 34 37
|
sqdivd |
|
75 |
71
|
recnd |
|
76 |
42 75
|
sqmuld |
|
77 |
2
|
axsegconlem2 |
|
78 |
77
|
ad2antlr |
|
79 |
2
|
axsegconlem3 |
|
80 |
79
|
ad2antlr |
|
81 |
|
resqrtth |
|
82 |
78 80 81
|
syl2anc |
|
83 |
82
|
oveq1d |
|
84 |
76 83
|
eqtrd |
|
85 |
1
|
axsegconlem2 |
|
86 |
1
|
axsegconlem3 |
|
87 |
|
resqrtth |
|
88 |
85 86 87
|
syl2anc |
|
89 |
88
|
3adant3 |
|
90 |
89
|
ad2antrr |
|
91 |
84 90
|
oveq12d |
|
92 |
70 74 91
|
3eqtrd |
|
93 |
92
|
sumeq2dv |
|
94 |
|
fzfid |
|
95 |
77
|
adantl |
|
96 |
95
|
recnd |
|
97 |
71
|
resqcld |
|
98 |
97
|
recnd |
|
99 |
94 96 98
|
fsummulc2 |
|
100 |
99
|
oveq1d |
|
101 |
|
fveq2 |
|
102 |
|
fveq2 |
|
103 |
101 102
|
oveq12d |
|
104 |
103
|
oveq1d |
|
105 |
104
|
cbvsumv |
|
106 |
2 105
|
eqtri |
|
107 |
|
fveq2 |
|
108 |
|
fveq2 |
|
109 |
107 108
|
oveq12d |
|
110 |
109
|
oveq1d |
|
111 |
110
|
cbvsumv |
|
112 |
111 1
|
eqtr4i |
|
113 |
106 112
|
oveq12i |
|
114 |
|
eqid |
|
115 |
114
|
axsegconlem2 |
|
116 |
115
|
3adant3 |
|
117 |
116
|
adantr |
|
118 |
95 117
|
remulcld |
|
119 |
118
|
recnd |
|
120 |
|
eqid |
|
121 |
120
|
axsegconlem2 |
|
122 |
121
|
adantl |
|
123 |
122
|
recnd |
|
124 |
85
|
3adant3 |
|
125 |
124
|
adantr |
|
126 |
125
|
recnd |
|
127 |
86
|
3adant3 |
|
128 |
|
sqrt00 |
|
129 |
128
|
necon3bid |
|
130 |
124 127 129
|
syl2anc |
|
131 |
36 130
|
mpbid |
|
132 |
131
|
adantr |
|
133 |
119 123 126 132
|
divmul3d |
|
134 |
113 133
|
mpbiri |
|
135 |
78 97
|
remulcld |
|
136 |
135
|
recnd |
|
137 |
94 126 136 132
|
fsumdivc |
|
138 |
100 134 137
|
3eqtr3rd |
|
139 |
93 138
|
eqtrd |
|