| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axsegconlem2.1 |  |-  S = sum_ p e. ( 1 ... N ) ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) | 
						
							| 2 |  | axsegconlem7.2 |  |-  T = sum_ p e. ( 1 ... N ) ( ( ( C ` p ) - ( D ` p ) ) ^ 2 ) | 
						
							| 3 |  | axsegconlem8.3 |  |-  F = ( k e. ( 1 ... N ) |-> ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) / ( sqrt ` S ) ) ) | 
						
							| 4 |  | fveq2 |  |-  ( k = i -> ( B ` k ) = ( B ` i ) ) | 
						
							| 5 | 4 | oveq2d |  |-  ( k = i -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) = ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) | 
						
							| 6 |  | fveq2 |  |-  ( k = i -> ( A ` k ) = ( A ` i ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( k = i -> ( ( sqrt ` T ) x. ( A ` k ) ) = ( ( sqrt ` T ) x. ( A ` i ) ) ) | 
						
							| 8 | 5 7 | oveq12d |  |-  ( k = i -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) = ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( k = i -> ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) / ( sqrt ` S ) ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) | 
						
							| 10 |  | ovex |  |-  ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) e. _V | 
						
							| 11 | 9 3 10 | fvmpt |  |-  ( i e. ( 1 ... N ) -> ( F ` i ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( B ` i ) - ( F ` i ) ) = ( ( B ` i ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) ) | 
						
							| 14 | 1 | axsegconlem4 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( sqrt ` S ) e. RR ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( sqrt ` S ) e. RR ) | 
						
							| 16 | 15 | ad2antrr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) e. RR ) | 
						
							| 17 |  | simpl2 |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 18 |  | fveere |  |-  ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) | 
						
							| 19 | 17 18 | sylan |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) | 
						
							| 20 | 16 19 | remulcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( B ` i ) ) e. RR ) | 
						
							| 21 | 20 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( B ` i ) ) e. CC ) | 
						
							| 22 | 2 | axsegconlem4 |  |-  ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( sqrt ` T ) e. RR ) | 
						
							| 23 |  | readdcl |  |-  ( ( ( sqrt ` S ) e. RR /\ ( sqrt ` T ) e. RR ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) | 
						
							| 24 | 15 22 23 | syl2an |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) | 
						
							| 26 | 25 19 | remulcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) e. RR ) | 
						
							| 27 | 22 | ad2antlr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` T ) e. RR ) | 
						
							| 28 |  | simpl1 |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 29 |  | fveere |  |-  ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) | 
						
							| 30 | 28 29 | sylan |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) | 
						
							| 31 | 27 30 | remulcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( A ` i ) ) e. RR ) | 
						
							| 32 | 26 31 | resubcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) e. RR ) | 
						
							| 33 | 32 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) e. CC ) | 
						
							| 34 | 16 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) e. CC ) | 
						
							| 35 | 1 | axsegconlem6 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> 0 < ( sqrt ` S ) ) | 
						
							| 36 | 35 | gt0ne0d |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( sqrt ` S ) =/= 0 ) | 
						
							| 37 | 36 | ad2antrr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) =/= 0 ) | 
						
							| 38 | 21 33 34 37 | divsubdird |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) / ( sqrt ` S ) ) = ( ( ( ( sqrt ` S ) x. ( B ` i ) ) / ( sqrt ` S ) ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) ) | 
						
							| 39 | 26 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) e. CC ) | 
						
							| 40 | 31 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( A ` i ) ) e. CC ) | 
						
							| 41 | 21 39 40 | subsubd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) = ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) ) | 
						
							| 42 | 27 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` T ) e. CC ) | 
						
							| 43 | 19 | renegcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> -u ( B ` i ) e. RR ) | 
						
							| 44 | 43 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> -u ( B ` i ) e. CC ) | 
						
							| 45 | 30 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) | 
						
							| 46 | 42 44 45 | adddid |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( -u ( B ` i ) + ( A ` i ) ) ) = ( ( ( sqrt ` T ) x. -u ( B ` i ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) ) | 
						
							| 47 | 44 45 | addcomd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( -u ( B ` i ) + ( A ` i ) ) = ( ( A ` i ) + -u ( B ` i ) ) ) | 
						
							| 48 | 19 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) | 
						
							| 49 | 45 48 | negsubd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) + -u ( B ` i ) ) = ( ( A ` i ) - ( B ` i ) ) ) | 
						
							| 50 | 47 49 | eqtrd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( -u ( B ` i ) + ( A ` i ) ) = ( ( A ` i ) - ( B ` i ) ) ) | 
						
							| 51 | 50 | oveq2d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( -u ( B ` i ) + ( A ` i ) ) ) = ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ) | 
						
							| 52 | 25 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. CC ) | 
						
							| 53 | 52 34 | negsubdi2d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> -u ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = ( ( sqrt ` S ) - ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) | 
						
							| 54 | 34 42 | pncan2d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = ( sqrt ` T ) ) | 
						
							| 55 | 54 | negeqd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> -u ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = -u ( sqrt ` T ) ) | 
						
							| 56 | 53 55 | eqtr3d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) - ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = -u ( sqrt ` T ) ) | 
						
							| 57 | 56 | oveq1d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) - ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( B ` i ) ) = ( -u ( sqrt ` T ) x. ( B ` i ) ) ) | 
						
							| 58 | 34 52 48 | subdird |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) - ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( B ` i ) ) = ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) ) | 
						
							| 59 |  | mulneg12 |  |-  ( ( ( sqrt ` T ) e. CC /\ ( B ` i ) e. CC ) -> ( -u ( sqrt ` T ) x. ( B ` i ) ) = ( ( sqrt ` T ) x. -u ( B ` i ) ) ) | 
						
							| 60 | 42 48 59 | syl2anc |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( -u ( sqrt ` T ) x. ( B ` i ) ) = ( ( sqrt ` T ) x. -u ( B ` i ) ) ) | 
						
							| 61 | 57 58 60 | 3eqtr3rd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. -u ( B ` i ) ) = ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) ) | 
						
							| 62 | 61 | oveq1d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. -u ( B ` i ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) = ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) ) | 
						
							| 63 | 46 51 62 | 3eqtr3rd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) = ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ) | 
						
							| 64 | 41 63 | eqtrd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) = ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ) | 
						
							| 65 | 64 | oveq1d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) / ( sqrt ` S ) ) = ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ) | 
						
							| 66 | 48 34 37 | divcan3d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) x. ( B ` i ) ) / ( sqrt ` S ) ) = ( B ` i ) ) | 
						
							| 67 | 66 | oveq1d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) x. ( B ` i ) ) / ( sqrt ` S ) ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) = ( ( B ` i ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) ) | 
						
							| 68 | 38 65 67 | 3eqtr3rd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( B ` i ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) = ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ) | 
						
							| 69 | 13 68 | eqtrd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( B ` i ) - ( F ` i ) ) = ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ) | 
						
							| 70 | 69 | oveq1d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( B ` i ) - ( F ` i ) ) ^ 2 ) = ( ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ^ 2 ) ) | 
						
							| 71 | 30 19 | resubcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) - ( B ` i ) ) e. RR ) | 
						
							| 72 | 27 71 | remulcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) e. RR ) | 
						
							| 73 | 72 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) e. CC ) | 
						
							| 74 | 73 34 37 | sqdivd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ^ 2 ) = ( ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ^ 2 ) / ( ( sqrt ` S ) ^ 2 ) ) ) | 
						
							| 75 | 71 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) - ( B ` i ) ) e. CC ) | 
						
							| 76 | 42 75 | sqmuld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ^ 2 ) = ( ( ( sqrt ` T ) ^ 2 ) x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) ) | 
						
							| 77 | 2 | axsegconlem2 |  |-  ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> T e. RR ) | 
						
							| 78 | 77 | ad2antlr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> T e. RR ) | 
						
							| 79 | 2 | axsegconlem3 |  |-  ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> 0 <_ T ) | 
						
							| 80 | 79 | ad2antlr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> 0 <_ T ) | 
						
							| 81 |  | resqrtth |  |-  ( ( T e. RR /\ 0 <_ T ) -> ( ( sqrt ` T ) ^ 2 ) = T ) | 
						
							| 82 | 78 80 81 | syl2anc |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) ^ 2 ) = T ) | 
						
							| 83 | 82 | oveq1d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) ^ 2 ) x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) = ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) ) | 
						
							| 84 | 76 83 | eqtrd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ^ 2 ) = ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) ) | 
						
							| 85 | 1 | axsegconlem2 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> S e. RR ) | 
						
							| 86 | 1 | axsegconlem3 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> 0 <_ S ) | 
						
							| 87 |  | resqrtth |  |-  ( ( S e. RR /\ 0 <_ S ) -> ( ( sqrt ` S ) ^ 2 ) = S ) | 
						
							| 88 | 85 86 87 | syl2anc |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( sqrt ` S ) ^ 2 ) = S ) | 
						
							| 89 | 88 | 3adant3 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( ( sqrt ` S ) ^ 2 ) = S ) | 
						
							| 90 | 89 | ad2antrr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) ^ 2 ) = S ) | 
						
							| 91 | 84 90 | oveq12d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ^ 2 ) / ( ( sqrt ` S ) ^ 2 ) ) = ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) | 
						
							| 92 | 70 74 91 | 3eqtrd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( B ` i ) - ( F ` i ) ) ^ 2 ) = ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) | 
						
							| 93 | 92 | sumeq2dv |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( F ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) | 
						
							| 94 |  | fzfid |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( 1 ... N ) e. Fin ) | 
						
							| 95 | 77 | adantl |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> T e. RR ) | 
						
							| 96 | 95 | recnd |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> T e. CC ) | 
						
							| 97 | 71 | resqcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) | 
						
							| 98 | 97 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. CC ) | 
						
							| 99 | 94 96 98 | fsummulc2 |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) = sum_ i e. ( 1 ... N ) ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) ) | 
						
							| 100 | 99 | oveq1d |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = ( sum_ i e. ( 1 ... N ) ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) | 
						
							| 101 |  | fveq2 |  |-  ( p = i -> ( C ` p ) = ( C ` i ) ) | 
						
							| 102 |  | fveq2 |  |-  ( p = i -> ( D ` p ) = ( D ` i ) ) | 
						
							| 103 | 101 102 | oveq12d |  |-  ( p = i -> ( ( C ` p ) - ( D ` p ) ) = ( ( C ` i ) - ( D ` i ) ) ) | 
						
							| 104 | 103 | oveq1d |  |-  ( p = i -> ( ( ( C ` p ) - ( D ` p ) ) ^ 2 ) = ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) | 
						
							| 105 | 104 | cbvsumv |  |-  sum_ p e. ( 1 ... N ) ( ( ( C ` p ) - ( D ` p ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) | 
						
							| 106 | 2 105 | eqtri |  |-  T = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) | 
						
							| 107 |  | fveq2 |  |-  ( i = p -> ( A ` i ) = ( A ` p ) ) | 
						
							| 108 |  | fveq2 |  |-  ( i = p -> ( B ` i ) = ( B ` p ) ) | 
						
							| 109 | 107 108 | oveq12d |  |-  ( i = p -> ( ( A ` i ) - ( B ` i ) ) = ( ( A ` p ) - ( B ` p ) ) ) | 
						
							| 110 | 109 | oveq1d |  |-  ( i = p -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) ) | 
						
							| 111 | 110 | cbvsumv |  |-  sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ p e. ( 1 ... N ) ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) | 
						
							| 112 | 111 1 | eqtr4i |  |-  sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = S | 
						
							| 113 | 106 112 | oveq12i |  |-  ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) = ( sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) x. S ) | 
						
							| 114 |  | eqid |  |-  sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) | 
						
							| 115 | 114 | axsegconlem2 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) | 
						
							| 116 | 115 | 3adant3 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) | 
						
							| 117 | 116 | adantr |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) | 
						
							| 118 | 95 117 | remulcld |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) e. RR ) | 
						
							| 119 | 118 | recnd |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) e. CC ) | 
						
							| 120 |  | eqid |  |-  sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) | 
						
							| 121 | 120 | axsegconlem2 |  |-  ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) e. RR ) | 
						
							| 122 | 121 | adantl |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) e. RR ) | 
						
							| 123 | 122 | recnd |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) e. CC ) | 
						
							| 124 | 85 | 3adant3 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> S e. RR ) | 
						
							| 125 | 124 | adantr |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> S e. RR ) | 
						
							| 126 | 125 | recnd |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> S e. CC ) | 
						
							| 127 | 86 | 3adant3 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> 0 <_ S ) | 
						
							| 128 |  | sqrt00 |  |-  ( ( S e. RR /\ 0 <_ S ) -> ( ( sqrt ` S ) = 0 <-> S = 0 ) ) | 
						
							| 129 | 128 | necon3bid |  |-  ( ( S e. RR /\ 0 <_ S ) -> ( ( sqrt ` S ) =/= 0 <-> S =/= 0 ) ) | 
						
							| 130 | 124 127 129 | syl2anc |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( ( sqrt ` S ) =/= 0 <-> S =/= 0 ) ) | 
						
							| 131 | 36 130 | mpbid |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> S =/= 0 ) | 
						
							| 132 | 131 | adantr |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> S =/= 0 ) | 
						
							| 133 | 119 123 126 132 | divmul3d |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) <-> ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) = ( sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) x. S ) ) ) | 
						
							| 134 | 113 133 | mpbiri |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) | 
						
							| 135 | 78 97 | remulcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) e. RR ) | 
						
							| 136 | 135 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) e. CC ) | 
						
							| 137 | 94 126 136 132 | fsumdivc |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( sum_ i e. ( 1 ... N ) ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = sum_ i e. ( 1 ... N ) ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) | 
						
							| 138 | 100 134 137 | 3eqtr3rd |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) | 
						
							| 139 | 93 138 | eqtrd |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( F ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |