Step |
Hyp |
Ref |
Expression |
1 |
|
axsegconlem2.1 |
|- S = sum_ p e. ( 1 ... N ) ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) |
2 |
|
axsegconlem7.2 |
|- T = sum_ p e. ( 1 ... N ) ( ( ( C ` p ) - ( D ` p ) ) ^ 2 ) |
3 |
|
axsegconlem8.3 |
|- F = ( k e. ( 1 ... N ) |-> ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) / ( sqrt ` S ) ) ) |
4 |
|
fveq2 |
|- ( k = i -> ( B ` k ) = ( B ` i ) ) |
5 |
4
|
oveq2d |
|- ( k = i -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) = ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) |
6 |
|
fveq2 |
|- ( k = i -> ( A ` k ) = ( A ` i ) ) |
7 |
6
|
oveq2d |
|- ( k = i -> ( ( sqrt ` T ) x. ( A ` k ) ) = ( ( sqrt ` T ) x. ( A ` i ) ) ) |
8 |
5 7
|
oveq12d |
|- ( k = i -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) = ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) |
9 |
8
|
oveq1d |
|- ( k = i -> ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) / ( sqrt ` S ) ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) |
10 |
|
ovex |
|- ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) e. _V |
11 |
9 3 10
|
fvmpt |
|- ( i e. ( 1 ... N ) -> ( F ` i ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) |
12 |
11
|
adantl |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) |
13 |
12
|
oveq2d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( B ` i ) - ( F ` i ) ) = ( ( B ` i ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) ) |
14 |
1
|
axsegconlem4 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( sqrt ` S ) e. RR ) |
15 |
14
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( sqrt ` S ) e. RR ) |
16 |
15
|
ad2antrr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) e. RR ) |
17 |
|
simpl2 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
18 |
|
fveere |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
19 |
17 18
|
sylan |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
20 |
16 19
|
remulcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( B ` i ) ) e. RR ) |
21 |
20
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( B ` i ) ) e. CC ) |
22 |
2
|
axsegconlem4 |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( sqrt ` T ) e. RR ) |
23 |
|
readdcl |
|- ( ( ( sqrt ` S ) e. RR /\ ( sqrt ` T ) e. RR ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) |
24 |
15 22 23
|
syl2an |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) |
25 |
24
|
adantr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) |
26 |
25 19
|
remulcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) e. RR ) |
27 |
22
|
ad2antlr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` T ) e. RR ) |
28 |
|
simpl1 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
29 |
|
fveere |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
30 |
28 29
|
sylan |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
31 |
27 30
|
remulcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( A ` i ) ) e. RR ) |
32 |
26 31
|
resubcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) e. RR ) |
33 |
32
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) e. CC ) |
34 |
16
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) e. CC ) |
35 |
1
|
axsegconlem6 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> 0 < ( sqrt ` S ) ) |
36 |
35
|
gt0ne0d |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( sqrt ` S ) =/= 0 ) |
37 |
36
|
ad2antrr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) =/= 0 ) |
38 |
21 33 34 37
|
divsubdird |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) / ( sqrt ` S ) ) = ( ( ( ( sqrt ` S ) x. ( B ` i ) ) / ( sqrt ` S ) ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) ) |
39 |
26
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) e. CC ) |
40 |
31
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( A ` i ) ) e. CC ) |
41 |
21 39 40
|
subsubd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) = ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) ) |
42 |
27
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` T ) e. CC ) |
43 |
19
|
renegcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> -u ( B ` i ) e. RR ) |
44 |
43
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> -u ( B ` i ) e. CC ) |
45 |
30
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
46 |
42 44 45
|
adddid |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( -u ( B ` i ) + ( A ` i ) ) ) = ( ( ( sqrt ` T ) x. -u ( B ` i ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) ) |
47 |
44 45
|
addcomd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( -u ( B ` i ) + ( A ` i ) ) = ( ( A ` i ) + -u ( B ` i ) ) ) |
48 |
19
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
49 |
45 48
|
negsubd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) + -u ( B ` i ) ) = ( ( A ` i ) - ( B ` i ) ) ) |
50 |
47 49
|
eqtrd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( -u ( B ` i ) + ( A ` i ) ) = ( ( A ` i ) - ( B ` i ) ) ) |
51 |
50
|
oveq2d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( -u ( B ` i ) + ( A ` i ) ) ) = ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ) |
52 |
25
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. CC ) |
53 |
52 34
|
negsubdi2d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> -u ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = ( ( sqrt ` S ) - ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) |
54 |
34 42
|
pncan2d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = ( sqrt ` T ) ) |
55 |
54
|
negeqd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> -u ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = -u ( sqrt ` T ) ) |
56 |
53 55
|
eqtr3d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) - ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = -u ( sqrt ` T ) ) |
57 |
56
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) - ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( B ` i ) ) = ( -u ( sqrt ` T ) x. ( B ` i ) ) ) |
58 |
34 52 48
|
subdird |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) - ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( B ` i ) ) = ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) ) |
59 |
|
mulneg12 |
|- ( ( ( sqrt ` T ) e. CC /\ ( B ` i ) e. CC ) -> ( -u ( sqrt ` T ) x. ( B ` i ) ) = ( ( sqrt ` T ) x. -u ( B ` i ) ) ) |
60 |
42 48 59
|
syl2anc |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( -u ( sqrt ` T ) x. ( B ` i ) ) = ( ( sqrt ` T ) x. -u ( B ` i ) ) ) |
61 |
57 58 60
|
3eqtr3rd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. -u ( B ` i ) ) = ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) ) |
62 |
61
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. -u ( B ` i ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) = ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) ) |
63 |
46 51 62
|
3eqtr3rd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) + ( ( sqrt ` T ) x. ( A ` i ) ) ) = ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ) |
64 |
41 63
|
eqtrd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) = ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ) |
65 |
64
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) x. ( B ` i ) ) - ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) / ( sqrt ` S ) ) = ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ) |
66 |
48 34 37
|
divcan3d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) x. ( B ` i ) ) / ( sqrt ` S ) ) = ( B ` i ) ) |
67 |
66
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) x. ( B ` i ) ) / ( sqrt ` S ) ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) = ( ( B ` i ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) ) |
68 |
38 65 67
|
3eqtr3rd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( B ` i ) - ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) = ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ) |
69 |
13 68
|
eqtrd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( B ` i ) - ( F ` i ) ) = ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ) |
70 |
69
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( B ` i ) - ( F ` i ) ) ^ 2 ) = ( ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ^ 2 ) ) |
71 |
30 19
|
resubcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) - ( B ` i ) ) e. RR ) |
72 |
27 71
|
remulcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) e. RR ) |
73 |
72
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) e. CC ) |
74 |
73 34 37
|
sqdivd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) / ( sqrt ` S ) ) ^ 2 ) = ( ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ^ 2 ) / ( ( sqrt ` S ) ^ 2 ) ) ) |
75 |
71
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) - ( B ` i ) ) e. CC ) |
76 |
42 75
|
sqmuld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ^ 2 ) = ( ( ( sqrt ` T ) ^ 2 ) x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) ) |
77 |
2
|
axsegconlem2 |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> T e. RR ) |
78 |
77
|
ad2antlr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> T e. RR ) |
79 |
2
|
axsegconlem3 |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> 0 <_ T ) |
80 |
79
|
ad2antlr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> 0 <_ T ) |
81 |
|
resqrtth |
|- ( ( T e. RR /\ 0 <_ T ) -> ( ( sqrt ` T ) ^ 2 ) = T ) |
82 |
78 80 81
|
syl2anc |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) ^ 2 ) = T ) |
83 |
82
|
oveq1d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) ^ 2 ) x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) = ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) ) |
84 |
76 83
|
eqtrd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ^ 2 ) = ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) ) |
85 |
1
|
axsegconlem2 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> S e. RR ) |
86 |
1
|
axsegconlem3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> 0 <_ S ) |
87 |
|
resqrtth |
|- ( ( S e. RR /\ 0 <_ S ) -> ( ( sqrt ` S ) ^ 2 ) = S ) |
88 |
85 86 87
|
syl2anc |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( sqrt ` S ) ^ 2 ) = S ) |
89 |
88
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( ( sqrt ` S ) ^ 2 ) = S ) |
90 |
89
|
ad2antrr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) ^ 2 ) = S ) |
91 |
84 90
|
oveq12d |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` T ) x. ( ( A ` i ) - ( B ` i ) ) ) ^ 2 ) / ( ( sqrt ` S ) ^ 2 ) ) = ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) |
92 |
70 74 91
|
3eqtrd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( B ` i ) - ( F ` i ) ) ^ 2 ) = ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) |
93 |
92
|
sumeq2dv |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( F ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) |
94 |
|
fzfid |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( 1 ... N ) e. Fin ) |
95 |
77
|
adantl |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> T e. RR ) |
96 |
95
|
recnd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> T e. CC ) |
97 |
71
|
resqcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) |
98 |
97
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. CC ) |
99 |
94 96 98
|
fsummulc2 |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) = sum_ i e. ( 1 ... N ) ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) ) |
100 |
99
|
oveq1d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = ( sum_ i e. ( 1 ... N ) ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) |
101 |
|
fveq2 |
|- ( p = i -> ( C ` p ) = ( C ` i ) ) |
102 |
|
fveq2 |
|- ( p = i -> ( D ` p ) = ( D ` i ) ) |
103 |
101 102
|
oveq12d |
|- ( p = i -> ( ( C ` p ) - ( D ` p ) ) = ( ( C ` i ) - ( D ` i ) ) ) |
104 |
103
|
oveq1d |
|- ( p = i -> ( ( ( C ` p ) - ( D ` p ) ) ^ 2 ) = ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
105 |
104
|
cbvsumv |
|- sum_ p e. ( 1 ... N ) ( ( ( C ` p ) - ( D ` p ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) |
106 |
2 105
|
eqtri |
|- T = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) |
107 |
|
fveq2 |
|- ( i = p -> ( A ` i ) = ( A ` p ) ) |
108 |
|
fveq2 |
|- ( i = p -> ( B ` i ) = ( B ` p ) ) |
109 |
107 108
|
oveq12d |
|- ( i = p -> ( ( A ` i ) - ( B ` i ) ) = ( ( A ` p ) - ( B ` p ) ) ) |
110 |
109
|
oveq1d |
|- ( i = p -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) ) |
111 |
110
|
cbvsumv |
|- sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ p e. ( 1 ... N ) ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) |
112 |
111 1
|
eqtr4i |
|- sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = S |
113 |
106 112
|
oveq12i |
|- ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) = ( sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) x. S ) |
114 |
|
eqid |
|- sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) |
115 |
114
|
axsegconlem2 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) |
116 |
115
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) |
117 |
116
|
adantr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) |
118 |
95 117
|
remulcld |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) e. RR ) |
119 |
118
|
recnd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) e. CC ) |
120 |
|
eqid |
|- sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) |
121 |
120
|
axsegconlem2 |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) e. RR ) |
122 |
121
|
adantl |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) e. RR ) |
123 |
122
|
recnd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) e. CC ) |
124 |
85
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> S e. RR ) |
125 |
124
|
adantr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> S e. RR ) |
126 |
125
|
recnd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> S e. CC ) |
127 |
86
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> 0 <_ S ) |
128 |
|
sqrt00 |
|- ( ( S e. RR /\ 0 <_ S ) -> ( ( sqrt ` S ) = 0 <-> S = 0 ) ) |
129 |
128
|
necon3bid |
|- ( ( S e. RR /\ 0 <_ S ) -> ( ( sqrt ` S ) =/= 0 <-> S =/= 0 ) ) |
130 |
124 127 129
|
syl2anc |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( ( sqrt ` S ) =/= 0 <-> S =/= 0 ) ) |
131 |
36 130
|
mpbid |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> S =/= 0 ) |
132 |
131
|
adantr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> S =/= 0 ) |
133 |
119 123 126 132
|
divmul3d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) <-> ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) = ( sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) x. S ) ) ) |
134 |
113 133
|
mpbiri |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( T x. sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
135 |
78 97
|
remulcld |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) e. RR ) |
136 |
135
|
recnd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) e. CC ) |
137 |
94 126 136 132
|
fsumdivc |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( sum_ i e. ( 1 ... N ) ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = sum_ i e. ( 1 ... N ) ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) ) |
138 |
100 134 137
|
3eqtr3rd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( T x. ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) / S ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
139 |
93 138
|
eqtrd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( F ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |