| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axsegconlem2.1 |  |-  S = sum_ p e. ( 1 ... N ) ( ( ( A ` p ) - ( B ` p ) ) ^ 2 ) | 
						
							| 2 |  | axsegconlem7.2 |  |-  T = sum_ p e. ( 1 ... N ) ( ( ( C ` p ) - ( D ` p ) ) ^ 2 ) | 
						
							| 3 |  | axsegconlem8.3 |  |-  F = ( k e. ( 1 ... N ) |-> ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) / ( sqrt ` S ) ) ) | 
						
							| 4 | 2 | axsegconlem4 |  |-  ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( sqrt ` T ) e. RR ) | 
						
							| 5 | 4 | ad2antlr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` T ) e. RR ) | 
						
							| 6 |  | simpl1 |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 7 |  | fveere |  |-  ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) | 
						
							| 8 | 6 7 | sylan |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) | 
						
							| 9 | 5 8 | remulcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( A ` i ) ) e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) x. ( A ` i ) ) e. CC ) | 
						
							| 11 | 1 | axsegconlem4 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( sqrt ` S ) e. RR ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( sqrt ` S ) e. RR ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) e. RR ) | 
						
							| 14 | 1 2 3 | axsegconlem8 |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> F e. ( EE ` N ) ) | 
						
							| 15 |  | fveere |  |-  ( ( F e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) e. RR ) | 
						
							| 16 | 14 15 | sylan |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) e. RR ) | 
						
							| 17 | 13 16 | remulcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( F ` i ) ) e. RR ) | 
						
							| 18 | 17 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( F ` i ) ) e. CC ) | 
						
							| 19 |  | readdcl |  |-  ( ( ( sqrt ` S ) e. RR /\ ( sqrt ` T ) e. RR ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) | 
						
							| 20 | 12 4 19 | syl2an |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. RR ) | 
						
							| 22 | 21 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) e. CC ) | 
						
							| 23 |  | 0red |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> 0 e. RR ) | 
						
							| 24 | 12 | adantr |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( sqrt ` S ) e. RR ) | 
						
							| 25 | 1 | axsegconlem6 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> 0 < ( sqrt ` S ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> 0 < ( sqrt ` S ) ) | 
						
							| 27 | 2 | axsegconlem5 |  |-  ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> 0 <_ ( sqrt ` T ) ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> 0 <_ ( sqrt ` T ) ) | 
						
							| 29 |  | addge01 |  |-  ( ( ( sqrt ` S ) e. RR /\ ( sqrt ` T ) e. RR ) -> ( 0 <_ ( sqrt ` T ) <-> ( sqrt ` S ) <_ ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) | 
						
							| 30 | 12 4 29 | syl2an |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( 0 <_ ( sqrt ` T ) <-> ( sqrt ` S ) <_ ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) | 
						
							| 31 | 28 30 | mpbid |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( sqrt ` S ) <_ ( ( sqrt ` S ) + ( sqrt ` T ) ) ) | 
						
							| 32 | 23 24 20 26 31 | ltletrd |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> 0 < ( ( sqrt ` S ) + ( sqrt ` T ) ) ) | 
						
							| 33 | 32 | gt0ne0d |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) =/= 0 ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) + ( sqrt ` T ) ) =/= 0 ) | 
						
							| 35 | 10 18 22 34 | divdird |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( ( ( ( sqrt ` T ) x. ( A ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) + ( ( ( sqrt ` S ) x. ( F ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) ) | 
						
							| 36 |  | fveq2 |  |-  ( k = i -> ( B ` k ) = ( B ` i ) ) | 
						
							| 37 | 36 | oveq2d |  |-  ( k = i -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) = ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) | 
						
							| 38 |  | fveq2 |  |-  ( k = i -> ( A ` k ) = ( A ` i ) ) | 
						
							| 39 | 38 | oveq2d |  |-  ( k = i -> ( ( sqrt ` T ) x. ( A ` k ) ) = ( ( sqrt ` T ) x. ( A ` i ) ) ) | 
						
							| 40 | 37 39 | oveq12d |  |-  ( k = i -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) = ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( k = i -> ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` k ) ) - ( ( sqrt ` T ) x. ( A ` k ) ) ) / ( sqrt ` S ) ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) | 
						
							| 42 |  | ovex |  |-  ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) e. _V | 
						
							| 43 | 41 3 42 | fvmpt |  |-  ( i e. ( 1 ... N ) -> ( F ` i ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) | 
						
							| 44 | 43 | adantl |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) = ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( F ` i ) ) = ( ( sqrt ` S ) x. ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) ) | 
						
							| 46 |  | simpl2 |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 47 |  | fveere |  |-  ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) | 
						
							| 48 | 46 47 | sylan |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) | 
						
							| 49 | 21 48 | remulcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) e. RR ) | 
						
							| 50 | 49 9 | resubcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) e. RR ) | 
						
							| 51 | 50 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) e. CC ) | 
						
							| 52 | 13 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) e. CC ) | 
						
							| 53 | 25 | gt0ne0d |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( sqrt ` S ) =/= 0 ) | 
						
							| 54 | 53 | ad2antrr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` S ) =/= 0 ) | 
						
							| 55 | 51 52 54 | divcan2d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) / ( sqrt ` S ) ) ) = ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) | 
						
							| 56 | 45 55 | eqtrd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` S ) x. ( F ` i ) ) = ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) | 
						
							| 57 | 56 | oveq2d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) = ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) ) | 
						
							| 58 | 49 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) e. CC ) | 
						
							| 59 | 10 58 | pncan3d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) - ( ( sqrt ` T ) x. ( A ` i ) ) ) ) = ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) | 
						
							| 60 | 57 59 | eqtrd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) = ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) | 
						
							| 61 | 9 17 | readdcld |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) e. RR ) | 
						
							| 62 | 61 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) e. CC ) | 
						
							| 63 | 48 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) | 
						
							| 64 | 62 63 22 34 | divmul2d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( B ` i ) <-> ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) = ( ( ( sqrt ` S ) + ( sqrt ` T ) ) x. ( B ` i ) ) ) ) | 
						
							| 65 | 60 64 | mpbird |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` T ) x. ( A ` i ) ) + ( ( sqrt ` S ) x. ( F ` i ) ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( B ` i ) ) | 
						
							| 66 | 4 | recnd |  |-  ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( sqrt ` T ) e. CC ) | 
						
							| 67 | 66 | ad2antlr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( sqrt ` T ) e. CC ) | 
						
							| 68 | 8 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) | 
						
							| 69 | 67 68 22 34 | div23d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( ( ( sqrt ` T ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( A ` i ) ) ) | 
						
							| 70 | 22 52 22 34 | divsubdird |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) ) | 
						
							| 71 | 12 | recnd |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( sqrt ` S ) e. CC ) | 
						
							| 72 |  | pncan2 |  |-  ( ( ( sqrt ` S ) e. CC /\ ( sqrt ` T ) e. CC ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = ( sqrt ` T ) ) | 
						
							| 73 | 71 66 72 | syl2an |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = ( sqrt ` T ) ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) = ( sqrt ` T ) ) | 
						
							| 75 | 74 | oveq1d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) - ( sqrt ` S ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( ( sqrt ` T ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) | 
						
							| 76 | 22 34 | dividd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) + ( sqrt ` T ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = 1 ) | 
						
							| 77 | 76 | oveq1d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` S ) + ( sqrt ` T ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) = ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) ) | 
						
							| 78 | 70 75 77 | 3eqtr3d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( sqrt ` T ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) ) | 
						
							| 79 | 78 | oveq1d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( A ` i ) ) = ( ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) x. ( A ` i ) ) ) | 
						
							| 80 | 69 79 | eqtrd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` T ) x. ( A ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) x. ( A ` i ) ) ) | 
						
							| 81 | 16 | recnd |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) e. CC ) | 
						
							| 82 | 52 81 22 34 | div23d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( sqrt ` S ) x. ( F ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) = ( ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( F ` i ) ) ) | 
						
							| 83 | 80 82 | oveq12d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( sqrt ` T ) x. ( A ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) + ( ( ( sqrt ` S ) x. ( F ` i ) ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) = ( ( ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) x. ( A ` i ) ) + ( ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( F ` i ) ) ) ) | 
						
							| 84 | 35 65 83 | 3eqtr3d |  |-  ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) = ( ( ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) x. ( A ` i ) ) + ( ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( F ` i ) ) ) ) | 
						
							| 85 | 84 | ralrimiva |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) ) x. ( A ` i ) ) + ( ( ( sqrt ` S ) / ( ( sqrt ` S ) + ( sqrt ` T ) ) ) x. ( F ` i ) ) ) ) |