Metamath Proof Explorer


Theorem axsegconlem10

Description: Lemma for axsegcon . Show that the scaling constant from axsegconlem7 produces the betweenness condition for A , B and F . (Contributed by Scott Fenton, 21-Sep-2013)

Ref Expression
Hypotheses axsegconlem2.1 S = p = 1 N A p B p 2
axsegconlem7.2 T = p = 1 N C p D p 2
axsegconlem8.3 F = k 1 N S + T B k T A k S
Assertion axsegconlem10 A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i = 1 S S + T A i + S S + T F i

Proof

Step Hyp Ref Expression
1 axsegconlem2.1 S = p = 1 N A p B p 2
2 axsegconlem7.2 T = p = 1 N C p D p 2
3 axsegconlem8.3 F = k 1 N S + T B k T A k S
4 2 axsegconlem4 C 𝔼 N D 𝔼 N T
5 4 ad2antlr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T
6 simpl1 A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N A 𝔼 N
7 fveere A 𝔼 N i 1 N A i
8 6 7 sylan A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N A i
9 5 8 remulcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i
10 9 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i
11 1 axsegconlem4 A 𝔼 N B 𝔼 N S
12 11 3adant3 A 𝔼 N B 𝔼 N A B S
13 12 ad2antrr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S
14 1 2 3 axsegconlem8 A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N F 𝔼 N
15 fveere F 𝔼 N i 1 N F i
16 14 15 sylan A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N F i
17 13 16 remulcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S F i
18 17 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S F i
19 readdcl S T S + T
20 12 4 19 syl2an A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S + T
21 20 adantr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T
22 21 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T
23 0red A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N 0
24 12 adantr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S
25 1 axsegconlem6 A 𝔼 N B 𝔼 N A B 0 < S
26 25 adantr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N 0 < S
27 2 axsegconlem5 C 𝔼 N D 𝔼 N 0 T
28 27 adantl A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N 0 T
29 addge01 S T 0 T S S + T
30 12 4 29 syl2an A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N 0 T S S + T
31 28 30 mpbid A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S S + T
32 23 24 20 26 31 ltletrd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N 0 < S + T
33 32 gt0ne0d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S + T 0
34 33 adantr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T 0
35 10 18 22 34 divdird A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i + S F i S + T = T A i S + T + S F i S + T
36 fveq2 k = i B k = B i
37 36 oveq2d k = i S + T B k = S + T B i
38 fveq2 k = i A k = A i
39 38 oveq2d k = i T A k = T A i
40 37 39 oveq12d k = i S + T B k T A k = S + T B i T A i
41 40 oveq1d k = i S + T B k T A k S = S + T B i T A i S
42 ovex S + T B i T A i S V
43 41 3 42 fvmpt i 1 N F i = S + T B i T A i S
44 43 adantl A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N F i = S + T B i T A i S
45 44 oveq2d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S F i = S S + T B i T A i S
46 simpl2 A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N B 𝔼 N
47 fveere B 𝔼 N i 1 N B i
48 46 47 sylan A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i
49 21 48 remulcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T B i
50 49 9 resubcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T B i T A i
51 50 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T B i T A i
52 13 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S
53 25 gt0ne0d A 𝔼 N B 𝔼 N A B S 0
54 53 ad2antrr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S 0
55 51 52 54 divcan2d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S S + T B i T A i S = S + T B i T A i
56 45 55 eqtrd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S F i = S + T B i T A i
57 56 oveq2d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i + S F i = T A i + S + T B i - T A i
58 49 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T B i
59 10 58 pncan3d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i + S + T B i - T A i = S + T B i
60 57 59 eqtrd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i + S F i = S + T B i
61 9 17 readdcld A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i + S F i
62 61 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i + S F i
63 48 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i
64 62 63 22 34 divmul2d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i + S F i S + T = B i T A i + S F i = S + T B i
65 60 64 mpbird A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i + S F i S + T = B i
66 4 recnd C 𝔼 N D 𝔼 N T
67 66 ad2antlr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T
68 8 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N A i
69 67 68 22 34 div23d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i S + T = T S + T A i
70 22 52 22 34 divsubdird A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T - S S + T = S + T S + T S S + T
71 12 recnd A 𝔼 N B 𝔼 N A B S
72 pncan2 S T S + T - S = T
73 71 66 72 syl2an A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N S + T - S = T
74 73 adantr A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T - S = T
75 74 oveq1d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T - S S + T = T S + T
76 22 34 dividd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T S + T = 1
77 76 oveq1d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S + T S + T S S + T = 1 S S + T
78 70 75 77 3eqtr3d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T S + T = 1 S S + T
79 78 oveq1d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T S + T A i = 1 S S + T A i
80 69 79 eqtrd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i S + T = 1 S S + T A i
81 16 recnd A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N F i
82 52 81 22 34 div23d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N S F i S + T = S S + T F i
83 80 82 oveq12d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N T A i S + T + S F i S + T = 1 S S + T A i + S S + T F i
84 35 65 83 3eqtr3d A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i = 1 S S + T A i + S S + T F i
85 84 ralrimiva A 𝔼 N B 𝔼 N A B C 𝔼 N D 𝔼 N i 1 N B i = 1 S S + T A i + S S + T F i