Step |
Hyp |
Ref |
Expression |
1 |
|
axsegconlem2.1 |
|
2 |
|
axsegconlem7.2 |
|
3 |
|
axsegconlem8.3 |
|
4 |
2
|
axsegconlem4 |
|
5 |
4
|
ad2antlr |
|
6 |
|
simpl1 |
|
7 |
|
fveere |
|
8 |
6 7
|
sylan |
|
9 |
5 8
|
remulcld |
|
10 |
9
|
recnd |
|
11 |
1
|
axsegconlem4 |
|
12 |
11
|
3adant3 |
|
13 |
12
|
ad2antrr |
|
14 |
1 2 3
|
axsegconlem8 |
|
15 |
|
fveere |
|
16 |
14 15
|
sylan |
|
17 |
13 16
|
remulcld |
|
18 |
17
|
recnd |
|
19 |
|
readdcl |
|
20 |
12 4 19
|
syl2an |
|
21 |
20
|
adantr |
|
22 |
21
|
recnd |
|
23 |
|
0red |
|
24 |
12
|
adantr |
|
25 |
1
|
axsegconlem6 |
|
26 |
25
|
adantr |
|
27 |
2
|
axsegconlem5 |
|
28 |
27
|
adantl |
|
29 |
|
addge01 |
|
30 |
12 4 29
|
syl2an |
|
31 |
28 30
|
mpbid |
|
32 |
23 24 20 26 31
|
ltletrd |
|
33 |
32
|
gt0ne0d |
|
34 |
33
|
adantr |
|
35 |
10 18 22 34
|
divdird |
|
36 |
|
fveq2 |
|
37 |
36
|
oveq2d |
|
38 |
|
fveq2 |
|
39 |
38
|
oveq2d |
|
40 |
37 39
|
oveq12d |
|
41 |
40
|
oveq1d |
|
42 |
|
ovex |
|
43 |
41 3 42
|
fvmpt |
|
44 |
43
|
adantl |
|
45 |
44
|
oveq2d |
|
46 |
|
simpl2 |
|
47 |
|
fveere |
|
48 |
46 47
|
sylan |
|
49 |
21 48
|
remulcld |
|
50 |
49 9
|
resubcld |
|
51 |
50
|
recnd |
|
52 |
13
|
recnd |
|
53 |
25
|
gt0ne0d |
|
54 |
53
|
ad2antrr |
|
55 |
51 52 54
|
divcan2d |
|
56 |
45 55
|
eqtrd |
|
57 |
56
|
oveq2d |
|
58 |
49
|
recnd |
|
59 |
10 58
|
pncan3d |
|
60 |
57 59
|
eqtrd |
|
61 |
9 17
|
readdcld |
|
62 |
61
|
recnd |
|
63 |
48
|
recnd |
|
64 |
62 63 22 34
|
divmul2d |
|
65 |
60 64
|
mpbird |
|
66 |
4
|
recnd |
|
67 |
66
|
ad2antlr |
|
68 |
8
|
recnd |
|
69 |
67 68 22 34
|
div23d |
|
70 |
22 52 22 34
|
divsubdird |
|
71 |
12
|
recnd |
|
72 |
|
pncan2 |
|
73 |
71 66 72
|
syl2an |
|
74 |
73
|
adantr |
|
75 |
74
|
oveq1d |
|
76 |
22 34
|
dividd |
|
77 |
76
|
oveq1d |
|
78 |
70 75 77
|
3eqtr3d |
|
79 |
78
|
oveq1d |
|
80 |
69 79
|
eqtrd |
|
81 |
16
|
recnd |
|
82 |
52 81 22 34
|
div23d |
|
83 |
80 82
|
oveq12d |
|
84 |
35 65 83
|
3eqtr3d |
|
85 |
84
|
ralrimiva |
|