Metamath Proof Explorer


Theorem ballotlem8

Description: There are as many countings with ties starting with a ballot for A as there are starting with a ballot for B . (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
Assertion ballotlem8 cOE|1c=cOE|¬1c

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 1 2 3 4 5 6 7 8 9 10 ballotlem7 RcOE|1c:cOE|1c1-1 ontocOE|¬1c
12 1 2 3 ballotlemoex OV
13 difexg OVOEV
14 12 13 ax-mp OEV
15 14 rabex cOE|1cV
16 15 f1oen RcOE|1c:cOE|1c1-1 ontocOE|¬1ccOE|1ccOE|¬1c
17 hasheni cOE|1ccOE|¬1ccOE|1c=cOE|¬1c
18 11 16 17 mp2b cOE|1c=cOE|¬1c