Metamath Proof Explorer


Theorem ballotlem7

Description: R is a bijection between two subsets of ( O \ E ) : one where a vote for A is picked first, and one where a vote for B is picked first. (Contributed by Thierry Arnoux, 12-Dec-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
Assertion ballotlem7 RcOE|1c:cOE|1c1-1 ontocOE|¬1c

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 10 funmpt2 FunR
12 1 2 3 4 5 6 7 8 9 10 ballotlemrinv R-1=R
13 rabid ccOE|1ccOE1c
14 1 2 3 4 5 6 7 8 9 10 ballotlemrc cOERcOE
15 14 adantr cOE1cRcOE
16 1 2 3 4 5 6 7 8 ballotlem1c cOE1c¬Icc
17 16 ex cOE1c¬Icc
18 1 2 3 4 5 6 7 8 9 10 ballotlem1ri cOE1RcIcc
19 18 notbid cOE¬1Rc¬Icc
20 17 19 sylibrd cOE1c¬1Rc
21 20 imp cOE1c¬1Rc
22 15 21 jca cOE1cRcOE¬1Rc
23 13 22 sylbi ccOE|1cRcOE¬1Rc
24 23 rgen ccOE|1cRcOE¬1Rc
25 eleq2 b=Rc1b1Rc
26 25 notbid b=Rc¬1b¬1Rc
27 26 elrab RcbOE|¬1bRcOE¬1Rc
28 eleq2 b=c1b1c
29 28 notbid b=c¬1b¬1c
30 29 cbvrabv bOE|¬1b=cOE|¬1c
31 30 eleq2i RcbOE|¬1bRccOE|¬1c
32 27 31 bitr3i RcOE¬1RcRccOE|¬1c
33 32 ralbii ccOE|1cRcOE¬1RcccOE|1cRccOE|¬1c
34 24 33 mpbi ccOE|1cRccOE|¬1c
35 ssrab2 cOE|1cOE
36 fvex ScV
37 imaexg ScVSccV
38 36 37 ax-mp SccV
39 38 10 dmmpti domR=OE
40 35 39 sseqtrri cOE|1cdomR
41 nfrab1 _ccOE|1c
42 nfrab1 _ccOE|¬1c
43 nfmpt1 _ccOEScc
44 10 43 nfcxfr _cR
45 41 42 44 funimass4f FunRcOE|1cdomRRcOE|1ccOE|¬1cccOE|1cRccOE|¬1c
46 11 40 45 mp2an RcOE|1ccOE|¬1cccOE|1cRccOE|¬1c
47 34 46 mpbir RcOE|1ccOE|¬1c
48 rabid ccOE|¬1ccOE¬1c
49 14 adantr cOE¬1cRcOE
50 1 2 3 4 5 6 7 8 ballotlemic cOE¬1cIcc
51 50 ex cOE¬1cIcc
52 51 18 sylibrd cOE¬1c1Rc
53 52 imp cOE¬1c1Rc
54 49 53 jca cOE¬1cRcOE1Rc
55 48 54 sylbi ccOE|¬1cRcOE1Rc
56 55 rgen ccOE|¬1cRcOE1Rc
57 25 elrab RcbOE|1bRcOE1Rc
58 28 cbvrabv bOE|1b=cOE|1c
59 58 eleq2i RcbOE|1bRccOE|1c
60 57 59 bitr3i RcOE1RcRccOE|1c
61 60 ralbii ccOE|¬1cRcOE1RcccOE|¬1cRccOE|1c
62 56 61 mpbi ccOE|¬1cRccOE|1c
63 ssrab2 cOE|¬1cOE
64 63 39 sseqtrri cOE|¬1cdomR
65 42 41 44 funimass4f FunRcOE|¬1cdomRRcOE|¬1ccOE|1cccOE|¬1cRccOE|1c
66 11 64 65 mp2an RcOE|¬1ccOE|1cccOE|¬1cRccOE|1c
67 62 66 mpbir RcOE|¬1ccOE|1c
68 11 12 47 67 40 64 rinvf1o RcOE|1c:cOE|1c1-1 ontocOE|¬1c