Metamath Proof Explorer


Theorem ballotlemrc

Description: Range of R . (Contributed by Thierry Arnoux, 19-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
Assertion ballotlemrc C O E R C O E

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 1 2 3 4 5 6 7 8 9 10 ballotlemro C O E R C O
12 1 2 3 4 5 6 7 8 ballotlemiex C O E I C 1 M + N F C I C = 0
13 12 simpld C O E I C 1 M + N
14 eqid u Fin , v Fin v u v u = u Fin , v Fin v u v u
15 1 2 3 4 5 6 7 8 9 10 14 ballotlemfrci C O E F R C I C = 0
16 0le0 0 0
17 15 16 eqbrtrdi C O E F R C I C 0
18 fveq2 i = I C F R C i = F R C I C
19 18 breq1d i = I C F R C i 0 F R C I C 0
20 19 rspcev I C 1 M + N F R C I C 0 i 1 M + N F R C i 0
21 13 17 20 syl2anc C O E i 1 M + N F R C i 0
22 1 2 3 4 5 6 ballotlemodife R C O E R C O i 1 M + N F R C i 0
23 11 21 22 sylanbrc C O E R C O E