| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ballotth.m |  |-  M e. NN | 
						
							| 2 |  | ballotth.n |  |-  N e. NN | 
						
							| 3 |  | ballotth.o |  |-  O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } | 
						
							| 4 |  | ballotth.p |  |-  P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) | 
						
							| 5 |  | ballotth.f |  |-  F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) | 
						
							| 6 |  | ballotth.e |  |-  E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } | 
						
							| 7 |  | ballotth.mgtn |  |-  N < M | 
						
							| 8 |  | ballotth.i |  |-  I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) | 
						
							| 9 |  | ballotth.s |  |-  S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) ) | 
						
							| 10 |  | ballotth.r |  |-  R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | ballotlemro |  |-  ( C e. ( O \ E ) -> ( R ` C ) e. O ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 | ballotlemiex |  |-  ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) | 
						
							| 13 | 12 | simpld |  |-  ( C e. ( O \ E ) -> ( I ` C ) e. ( 1 ... ( M + N ) ) ) | 
						
							| 14 |  | eqid |  |-  ( u e. Fin , v e. Fin |-> ( ( # ` ( v i^i u ) ) - ( # ` ( v \ u ) ) ) ) = ( u e. Fin , v e. Fin |-> ( ( # ` ( v i^i u ) ) - ( # ` ( v \ u ) ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 14 | ballotlemfrci |  |-  ( C e. ( O \ E ) -> ( ( F ` ( R ` C ) ) ` ( I ` C ) ) = 0 ) | 
						
							| 16 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 17 | 15 16 | eqbrtrdi |  |-  ( C e. ( O \ E ) -> ( ( F ` ( R ` C ) ) ` ( I ` C ) ) <_ 0 ) | 
						
							| 18 |  | fveq2 |  |-  ( i = ( I ` C ) -> ( ( F ` ( R ` C ) ) ` i ) = ( ( F ` ( R ` C ) ) ` ( I ` C ) ) ) | 
						
							| 19 | 18 | breq1d |  |-  ( i = ( I ` C ) -> ( ( ( F ` ( R ` C ) ) ` i ) <_ 0 <-> ( ( F ` ( R ` C ) ) ` ( I ` C ) ) <_ 0 ) ) | 
						
							| 20 | 19 | rspcev |  |-  ( ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` ( R ` C ) ) ` ( I ` C ) ) <_ 0 ) -> E. i e. ( 1 ... ( M + N ) ) ( ( F ` ( R ` C ) ) ` i ) <_ 0 ) | 
						
							| 21 | 13 17 20 | syl2anc |  |-  ( C e. ( O \ E ) -> E. i e. ( 1 ... ( M + N ) ) ( ( F ` ( R ` C ) ) ` i ) <_ 0 ) | 
						
							| 22 | 1 2 3 4 5 6 | ballotlemodife |  |-  ( ( R ` C ) e. ( O \ E ) <-> ( ( R ` C ) e. O /\ E. i e. ( 1 ... ( M + N ) ) ( ( F ` ( R ` C ) ) ` i ) <_ 0 ) ) | 
						
							| 23 | 11 21 22 | sylanbrc |  |-  ( C e. ( O \ E ) -> ( R ` C ) e. ( O \ E ) ) |