Metamath Proof Explorer


Theorem ballotlemfrci

Description: Reverse counting preserves a tie at the first tie. (Contributed by Thierry Arnoux, 21-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
ballotlemg × ˙ = u Fin , v Fin v u v u
Assertion ballotlemfrci C O E F R C I C = 0

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 ballotlemg × ˙ = u Fin , v Fin v u v u
12 1 2 3 4 5 6 7 8 ballotlemiex C O E I C 1 M + N F C I C = 0
13 12 simpld C O E I C 1 M + N
14 elfzuz I C 1 M + N I C 1
15 eluzfz2 I C 1 I C 1 I C
16 13 14 15 3syl C O E I C 1 I C
17 1 2 3 4 5 6 7 8 9 10 11 ballotlemfrc C O E I C 1 I C F R C I C = C × ˙ S C I C I C
18 16 17 mpdan C O E F R C I C = C × ˙ S C I C I C
19 1 2 3 4 5 6 7 8 9 ballotlemsi C O E S C I C = 1
20 19 oveq1d C O E S C I C I C = 1 I C
21 20 oveq2d C O E C × ˙ S C I C I C = C × ˙ 1 I C
22 18 21 eqtrd C O E F R C I C = C × ˙ 1 I C
23 fz1ssfz0 1 M + N 0 M + N
24 23 13 sseldi C O E I C 0 M + N
25 1 2 3 4 5 6 7 8 9 10 11 ballotlemfg C O E I C 0 M + N F C I C = C × ˙ 1 I C
26 24 25 mpdan C O E F C I C = C × ˙ 1 I C
27 12 simprd C O E F C I C = 0
28 22 26 27 3eqtr2d C O E F R C I C = 0