Metamath Proof Explorer


Theorem ballotlemfg

Description: Express the value of ( FC ) in terms of .^ . (Contributed by Thierry Arnoux, 21-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
ballotlemg × ˙ = u Fin , v Fin v u v u
Assertion ballotlemfg C O E J 0 M + N F C J = C × ˙ 1 J

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 ballotlemg × ˙ = u Fin , v Fin v u v u
12 eldifi C O E C O
13 12 adantr C O E J 0 M + N C O
14 elfzelz J 0 M + N J
15 14 adantl C O E J 0 M + N J
16 1 2 3 4 5 13 15 ballotlemfval C O E J 0 M + N F C J = 1 J C 1 J C
17 fzfi 1 M + N Fin
18 1 2 3 ballotlemelo C O C 1 M + N C = M
19 18 simplbi C O C 1 M + N
20 ssfi 1 M + N Fin C 1 M + N C Fin
21 17 19 20 sylancr C O C Fin
22 13 21 syl C O E J 0 M + N C Fin
23 fzfid C O E J 0 M + N 1 J Fin
24 1 2 3 4 5 6 7 8 9 10 11 ballotlemgval C Fin 1 J Fin C × ˙ 1 J = 1 J C 1 J C
25 22 23 24 syl2anc C O E J 0 M + N C × ˙ 1 J = 1 J C 1 J C
26 16 25 eqtr4d C O E J 0 M + N F C J = C × ˙ 1 J