Metamath Proof Explorer


Theorem ballotlemfg

Description: Express the value of ( FC ) in terms of .^ . (Contributed by Thierry Arnoux, 21-Apr-2017)

Ref Expression
Hypotheses ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 }
ballotth.p 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) )
ballotth.f 𝐹 = ( 𝑐𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) )
ballotth.e 𝐸 = { 𝑐𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹𝑐 ) ‘ 𝑖 ) }
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) )
ballotth.s 𝑆 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼𝑐 ) , ( ( ( 𝐼𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) )
ballotth.r 𝑅 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( ( 𝑆𝑐 ) “ 𝑐 ) )
ballotlemg = ( 𝑢 ∈ Fin , 𝑣 ∈ Fin ↦ ( ( ♯ ‘ ( 𝑣𝑢 ) ) − ( ♯ ‘ ( 𝑣𝑢 ) ) ) )
Assertion ballotlemfg ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝐹𝐶 ) ‘ 𝐽 ) = ( 𝐶 ( 1 ... 𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 ballotth.m 𝑀 ∈ ℕ
2 ballotth.n 𝑁 ∈ ℕ
3 ballotth.o 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 }
4 ballotth.p 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) )
5 ballotth.f 𝐹 = ( 𝑐𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) )
6 ballotth.e 𝐸 = { 𝑐𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹𝑐 ) ‘ 𝑖 ) }
7 ballotth.mgtn 𝑁 < 𝑀
8 ballotth.i 𝐼 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) )
9 ballotth.s 𝑆 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼𝑐 ) , ( ( ( 𝐼𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) )
10 ballotth.r 𝑅 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( ( 𝑆𝑐 ) “ 𝑐 ) )
11 ballotlemg = ( 𝑢 ∈ Fin , 𝑣 ∈ Fin ↦ ( ( ♯ ‘ ( 𝑣𝑢 ) ) − ( ♯ ‘ ( 𝑣𝑢 ) ) ) )
12 eldifi ( 𝐶 ∈ ( 𝑂𝐸 ) → 𝐶𝑂 )
13 12 adantr ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → 𝐶𝑂 )
14 elfzelz ( 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) → 𝐽 ∈ ℤ )
15 14 adantl ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → 𝐽 ∈ ℤ )
16 1 2 3 4 5 13 15 ballotlemfval ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝐹𝐶 ) ‘ 𝐽 ) = ( ( ♯ ‘ ( ( 1 ... 𝐽 ) ∩ 𝐶 ) ) − ( ♯ ‘ ( ( 1 ... 𝐽 ) ∖ 𝐶 ) ) ) )
17 fzfi ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin
18 1 2 3 ballotlemelo ( 𝐶𝑂 ↔ ( 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ♯ ‘ 𝐶 ) = 𝑀 ) )
19 18 simplbi ( 𝐶𝑂𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) )
20 ssfi ( ( ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin ∧ 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → 𝐶 ∈ Fin )
21 17 19 20 sylancr ( 𝐶𝑂𝐶 ∈ Fin )
22 13 21 syl ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → 𝐶 ∈ Fin )
23 fzfid ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( 1 ... 𝐽 ) ∈ Fin )
24 1 2 3 4 5 6 7 8 9 10 11 ballotlemgval ( ( 𝐶 ∈ Fin ∧ ( 1 ... 𝐽 ) ∈ Fin ) → ( 𝐶 ( 1 ... 𝐽 ) ) = ( ( ♯ ‘ ( ( 1 ... 𝐽 ) ∩ 𝐶 ) ) − ( ♯ ‘ ( ( 1 ... 𝐽 ) ∖ 𝐶 ) ) ) )
25 22 23 24 syl2anc ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( 𝐶 ( 1 ... 𝐽 ) ) = ( ( ♯ ‘ ( ( 1 ... 𝐽 ) ∩ 𝐶 ) ) − ( ♯ ‘ ( ( 1 ... 𝐽 ) ∖ 𝐶 ) ) ) )
26 16 25 eqtr4d ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝐹𝐶 ) ‘ 𝐽 ) = ( 𝐶 ( 1 ... 𝐽 ) ) )