| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ballotth.m | ⊢ 𝑀  ∈  ℕ | 
						
							| 2 |  | ballotth.n | ⊢ 𝑁  ∈  ℕ | 
						
							| 3 |  | ballotth.o | ⊢ 𝑂  =  { 𝑐  ∈  𝒫  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ♯ ‘ 𝑐 )  =  𝑀 } | 
						
							| 4 |  | ballotth.p | ⊢ 𝑃  =  ( 𝑥  ∈  𝒫  𝑂  ↦  ( ( ♯ ‘ 𝑥 )  /  ( ♯ ‘ 𝑂 ) ) ) | 
						
							| 5 |  | ballotth.f | ⊢ 𝐹  =  ( 𝑐  ∈  𝑂  ↦  ( 𝑖  ∈  ℤ  ↦  ( ( ♯ ‘ ( ( 1 ... 𝑖 )  ∩  𝑐 ) )  −  ( ♯ ‘ ( ( 1 ... 𝑖 )  ∖  𝑐 ) ) ) ) ) | 
						
							| 6 |  | ballotth.e | ⊢ 𝐸  =  { 𝑐  ∈  𝑂  ∣  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } | 
						
							| 7 |  | ballotth.mgtn | ⊢ 𝑁  <  𝑀 | 
						
							| 8 |  | ballotth.i | ⊢ 𝐼  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) ) | 
						
							| 9 |  | ballotth.s | ⊢ 𝑆  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑐 ) ,  ( ( ( 𝐼 ‘ 𝑐 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) ) | 
						
							| 10 |  | ballotth.r | ⊢ 𝑅  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( ( 𝑆 ‘ 𝑐 )  “  𝑐 ) ) | 
						
							| 11 |  | ballotlemg | ⊢  ↑   =  ( 𝑢  ∈  Fin ,  𝑣  ∈  Fin  ↦  ( ( ♯ ‘ ( 𝑣  ∩  𝑢 ) )  −  ( ♯ ‘ ( 𝑣  ∖  𝑢 ) ) ) ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 | ballotlemsf1o | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ◡ ( 𝑆 ‘ 𝐶 )  =  ( 𝑆 ‘ 𝐶 ) ) ) | 
						
							| 13 | 12 | simpld | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 14 |  | f1of1 | ⊢ ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀  +  𝑁 ) )  →  ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1→ ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1→ ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1→ ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 | ballotlemiex | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  0 ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 20 |  | elfzuz3 | ⊢ ( ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  →  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( 𝐼 ‘ 𝐶 ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( 𝐼 ‘ 𝐶 ) ) ) | 
						
							| 22 |  | elfzuz3 | ⊢ ( 𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) )  →  ( 𝐼 ‘ 𝐶 )  ∈  ( ℤ≥ ‘ 𝐽 ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝐼 ‘ 𝐶 )  ∈  ( ℤ≥ ‘ 𝐽 ) ) | 
						
							| 24 |  | uztrn | ⊢ ( ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( 𝐼 ‘ 𝐶 ) )  ∧  ( 𝐼 ‘ 𝐶 )  ∈  ( ℤ≥ ‘ 𝐽 ) )  →  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 𝐽 ) ) | 
						
							| 25 | 21 23 24 | syl2anc | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 𝐽 ) ) | 
						
							| 26 |  | fzss2 | ⊢ ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 𝐽 )  →  ( 1 ... 𝐽 )  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 1 ... 𝐽 )  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 28 |  | ssinss1 | ⊢ ( ( 1 ... 𝐽 )  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) )  →  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) )  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) )  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 30 |  | f1ores | ⊢ ( ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1→ ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) )  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝑆 ‘ 𝐶 )  ↾  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) ) : ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) –1-1-onto→ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) ) ) | 
						
							| 31 | 16 29 30 | syl2anc | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝑆 ‘ 𝐶 )  ↾  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) ) : ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) –1-1-onto→ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) ) ) | 
						
							| 32 |  | ovex | ⊢ ( 1 ... 𝐽 )  ∈  V | 
						
							| 33 | 32 | inex1 | ⊢ ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) )  ∈  V | 
						
							| 34 | 33 | f1oen | ⊢ ( ( ( 𝑆 ‘ 𝐶 )  ↾  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) ) : ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) –1-1-onto→ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) )  →  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) )  ≈  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) ) ) | 
						
							| 35 |  | hasheni | ⊢ ( ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) )  ≈  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) )  →  ( ♯ ‘ ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) ) ) ) | 
						
							| 36 | 31 34 35 | 3syl | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ♯ ‘ ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) ) ) ) | 
						
							| 37 | 27 | ssdifssd | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) )  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 38 |  | f1ores | ⊢ ( ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1→ ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) )  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝑆 ‘ 𝐶 )  ↾  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) : ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) –1-1-onto→ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) ) | 
						
							| 39 | 16 37 38 | syl2anc | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝑆 ‘ 𝐶 )  ↾  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) : ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) –1-1-onto→ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) ) | 
						
							| 40 |  | difexg | ⊢ ( ( 1 ... 𝐽 )  ∈  V  →  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) )  ∈  V ) | 
						
							| 41 | 32 40 | ax-mp | ⊢ ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) )  ∈  V | 
						
							| 42 | 41 | f1oen | ⊢ ( ( ( 𝑆 ‘ 𝐶 )  ↾  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) : ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) –1-1-onto→ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) )  →  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) )  ≈  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) ) | 
						
							| 43 |  | hasheni | ⊢ ( ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) )  ≈  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) )  →  ( ♯ ‘ ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) ) ) | 
						
							| 44 | 39 42 43 | 3syl | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ♯ ‘ ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) ) ) | 
						
							| 45 | 36 44 | oveq12d | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ♯ ‘ ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) )  −  ( ♯ ‘ ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) )  =  ( ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) ) )  −  ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) ) ) ) | 
						
							| 46 | 1 2 3 4 5 6 7 8 9 10 | ballotlemro | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑅 ‘ 𝐶 )  ∈  𝑂 ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝑅 ‘ 𝐶 )  ∈  𝑂 ) | 
						
							| 48 |  | elfzelz | ⊢ ( 𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) )  →  𝐽  ∈  ℤ ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  𝐽  ∈  ℤ ) | 
						
							| 50 | 1 2 3 4 5 47 49 | ballotlemfval | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 )  =  ( ( ♯ ‘ ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) )  −  ( ♯ ‘ ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) ) ) | 
						
							| 51 |  | fzfi | ⊢ ( 1 ... ( 𝑀  +  𝑁 ) )  ∈  Fin | 
						
							| 52 |  | eldifi | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  𝐶  ∈  𝑂 ) | 
						
							| 53 | 1 2 3 | ballotlemelo | ⊢ ( 𝐶  ∈  𝑂  ↔  ( 𝐶  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ( ♯ ‘ 𝐶 )  =  𝑀 ) ) | 
						
							| 54 | 53 | simplbi | ⊢ ( 𝐶  ∈  𝑂  →  𝐶  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 55 | 52 54 | syl | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  𝐶  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  𝐶  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 57 |  | ssfi | ⊢ ( ( ( 1 ... ( 𝑀  +  𝑁 ) )  ∈  Fin  ∧  𝐶  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  𝐶  ∈  Fin ) | 
						
							| 58 | 51 56 57 | sylancr | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  𝐶  ∈  Fin ) | 
						
							| 59 |  | fzfid | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∈  Fin ) | 
						
							| 60 | 1 2 3 4 5 6 7 8 9 10 11 | ballotlemgval | ⊢ ( ( 𝐶  ∈  Fin  ∧  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∈  Fin )  →  ( 𝐶  ↑  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) )  =  ( ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∩  𝐶 ) )  −  ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∖  𝐶 ) ) ) ) | 
						
							| 61 | 58 59 60 | syl2anc | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝐶  ↑  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) )  =  ( ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∩  𝐶 ) )  −  ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∖  𝐶 ) ) ) ) | 
						
							| 62 |  | dff1o3 | ⊢ ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀  +  𝑁 ) )  ↔  ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –onto→ ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  Fun  ◡ ( 𝑆 ‘ 𝐶 ) ) ) | 
						
							| 63 | 62 | simprbi | ⊢ ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀  +  𝑁 ) )  →  Fun  ◡ ( 𝑆 ‘ 𝐶 ) ) | 
						
							| 64 |  | imain | ⊢ ( Fun  ◡ ( 𝑆 ‘ 𝐶 )  →  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ( ( 𝑆 ‘ 𝐶 )  “  ( 1 ... 𝐽 ) )  ∩  ( ( 𝑆 ‘ 𝐶 )  “  ( 𝑅 ‘ 𝐶 ) ) ) ) | 
						
							| 65 | 13 63 64 | 3syl | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ( ( 𝑆 ‘ 𝐶 )  “  ( 1 ... 𝐽 ) )  ∩  ( ( 𝑆 ‘ 𝐶 )  “  ( 𝑅 ‘ 𝐶 ) ) ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ( ( 𝑆 ‘ 𝐶 )  “  ( 1 ... 𝐽 ) )  ∩  ( ( 𝑆 ‘ 𝐶 )  “  ( 𝑅 ‘ 𝐶 ) ) ) ) | 
						
							| 67 | 1 2 3 4 5 6 7 8 9 | ballotlemsima | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝑆 ‘ 𝐶 )  “  ( 1 ... 𝐽 ) )  =  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) | 
						
							| 68 | 1 2 3 4 5 6 7 8 9 10 | ballotlemscr | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝑆 ‘ 𝐶 )  “  ( 𝑅 ‘ 𝐶 ) )  =  𝐶 ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝑆 ‘ 𝐶 )  “  ( 𝑅 ‘ 𝐶 ) )  =  𝐶 ) | 
						
							| 70 | 67 69 | ineq12d | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ( 𝑆 ‘ 𝐶 )  “  ( 1 ... 𝐽 ) )  ∩  ( ( 𝑆 ‘ 𝐶 )  “  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∩  𝐶 ) ) | 
						
							| 71 | 66 70 | eqtrd | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∩  𝐶 ) ) | 
						
							| 72 | 71 | fveq2d | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) ) )  =  ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∩  𝐶 ) ) ) | 
						
							| 73 |  | imadif | ⊢ ( Fun  ◡ ( 𝑆 ‘ 𝐶 )  →  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ( ( 𝑆 ‘ 𝐶 )  “  ( 1 ... 𝐽 ) )  ∖  ( ( 𝑆 ‘ 𝐶 )  “  ( 𝑅 ‘ 𝐶 ) ) ) ) | 
						
							| 74 | 13 63 73 | 3syl | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ( ( 𝑆 ‘ 𝐶 )  “  ( 1 ... 𝐽 ) )  ∖  ( ( 𝑆 ‘ 𝐶 )  “  ( 𝑅 ‘ 𝐶 ) ) ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ( ( 𝑆 ‘ 𝐶 )  “  ( 1 ... 𝐽 ) )  ∖  ( ( 𝑆 ‘ 𝐶 )  “  ( 𝑅 ‘ 𝐶 ) ) ) ) | 
						
							| 76 | 67 69 | difeq12d | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ( 𝑆 ‘ 𝐶 )  “  ( 1 ... 𝐽 ) )  ∖  ( ( 𝑆 ‘ 𝐶 )  “  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∖  𝐶 ) ) | 
						
							| 77 | 75 76 | eqtrd | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) )  =  ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∖  𝐶 ) ) | 
						
							| 78 | 77 | fveq2d | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) )  =  ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∖  𝐶 ) ) ) | 
						
							| 79 | 72 78 | oveq12d | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) ) )  −  ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) ) )  =  ( ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∩  𝐶 ) )  −  ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) )  ∖  𝐶 ) ) ) ) | 
						
							| 80 | 61 79 | eqtr4d | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( 𝐶  ↑  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) )  =  ( ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∩  ( 𝑅 ‘ 𝐶 ) ) ) )  −  ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 )  “  ( ( 1 ... 𝐽 )  ∖  ( 𝑅 ‘ 𝐶 ) ) ) ) ) ) | 
						
							| 81 | 45 50 80 | 3eqtr4d | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝐽  ∈  ( 1 ... ( 𝐼 ‘ 𝐶 ) ) )  →  ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 )  =  ( 𝐶  ↑  ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) |