| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
| 2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
| 3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
| 4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
| 5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
| 6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
| 7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
| 8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
| 9 |
|
ballotth.s |
⊢ 𝑆 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝑐 ) , ( ( ( 𝐼 ‘ 𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
ballotlemsval |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑆 ‘ 𝐶 ) = ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
| 11 |
1 2 3 4 5 6 7 8 9
|
ballotlemsv |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑖 ) = if ( 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) , 𝑖 ) ) |
| 12 |
1 2 3 4 5 6 7 8 9
|
ballotlemsdom |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑖 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
| 13 |
11 12
|
eqeltrrd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → if ( 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) , 𝑖 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
| 14 |
1 2 3 4 5 6 7 8 9
|
ballotlemsv |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑗 ) = if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) ) |
| 15 |
1 2 3 4 5 6 7 8 9
|
ballotlemsdom |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑗 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
| 16 |
14 15
|
eqeltrrd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑖 = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) → ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) ) ) |
| 18 |
|
id |
⊢ ( 𝑖 = 𝑗 → 𝑖 = 𝑗 ) |
| 19 |
|
breq1 |
⊢ ( 𝑖 = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) → ( 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) ↔ ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) ≤ ( 𝐼 ‘ 𝐶 ) ) ) |
| 20 |
|
breq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) ↔ 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) ) ) |
| 21 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) ) = 0 ) ) |
| 22 |
21
|
simpld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
| 23 |
|
elfzelz |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
| 24 |
23
|
peano2zd |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( ( 𝐼 ‘ 𝐶 ) + 1 ) ∈ ℤ ) |
| 25 |
22 24
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) + 1 ) ∈ ℤ ) |
| 26 |
25
|
zcnd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) + 1 ) ∈ ℂ ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → ( ( 𝐼 ‘ 𝐶 ) + 1 ) ∈ ℂ ) |
| 28 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → 𝑗 ∈ ℤ ) |
| 29 |
28
|
zcnd |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → 𝑗 ∈ ℂ ) |
| 30 |
29
|
ad2antll |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → 𝑗 ∈ ℂ ) |
| 31 |
27 30
|
nncand |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) ) = 𝑗 ) |
| 32 |
31
|
eqcomd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → 𝑗 = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) ) ) |
| 33 |
22 23
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
| 35 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → 𝑗 ∈ ℕ ) |
| 36 |
35
|
ad2antll |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → 𝑗 ∈ ℕ ) |
| 37 |
34 36
|
ltesubnnd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) ≤ ( 𝐼 ‘ 𝐶 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) ∧ 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) ) → ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) ≤ ( 𝐼 ‘ 𝐶 ) ) |
| 39 |
|
vex |
⊢ 𝑗 ∈ V |
| 40 |
39
|
a1i |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → 𝑗 ∈ V ) |
| 41 |
|
ovexd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) ∈ V ) |
| 42 |
17 18 19 20 32 38 40 41
|
ifeqeqx |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) ∧ 𝑖 = if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) ) → 𝑗 = if ( 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) , 𝑖 ) ) |
| 43 |
|
oveq2 |
⊢ ( 𝑗 = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) → ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) ) ) |
| 44 |
|
id |
⊢ ( 𝑗 = 𝑖 → 𝑗 = 𝑖 ) |
| 45 |
|
breq1 |
⊢ ( 𝑗 = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) → ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) ↔ ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) ≤ ( 𝐼 ‘ 𝐶 ) ) ) |
| 46 |
|
breq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) ↔ 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) ) ) |
| 47 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → 𝑖 ∈ ℤ ) |
| 48 |
47
|
zcnd |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → 𝑖 ∈ ℂ ) |
| 49 |
48
|
ad2antrl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → 𝑖 ∈ ℂ ) |
| 50 |
27 49
|
nncand |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) ) = 𝑖 ) |
| 51 |
50
|
eqcomd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → 𝑖 = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) ) ) |
| 52 |
34
|
adantr |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) ∧ 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
| 53 |
|
simplrl |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) ∧ 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) ) → 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
| 54 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → 𝑖 ∈ ℕ ) |
| 55 |
53 54
|
syl |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) ∧ 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) ) → 𝑖 ∈ ℕ ) |
| 56 |
52 55
|
ltesubnnd |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) ∧ 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) ) → ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) ≤ ( 𝐼 ‘ 𝐶 ) ) |
| 57 |
|
vex |
⊢ 𝑖 ∈ V |
| 58 |
57
|
a1i |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → 𝑖 ∈ V ) |
| 59 |
|
ovexd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) ∈ V ) |
| 60 |
43 44 45 46 51 56 58 59
|
ifeqeqx |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) ∧ 𝑗 = if ( 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) , 𝑖 ) ) → 𝑖 = if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) ) |
| 61 |
42 60
|
impbida |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) → ( 𝑖 = if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) ↔ 𝑗 = if ( 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
| 62 |
10 13 16 61
|
f1o3d |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ◡ ( 𝑆 ‘ 𝐶 ) = ( 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) ) ) ) |
| 63 |
62
|
simpld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
| 64 |
|
oveq2 |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) ) |
| 65 |
20 64 18
|
ifbieq12d |
⊢ ( 𝑖 = 𝑗 → if ( 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) , 𝑖 ) = if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) ) |
| 66 |
65
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) , 𝑖 ) ) = ( 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) ) |
| 67 |
66
|
a1i |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑖 ) , 𝑖 ) ) = ( 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) ) ) |
| 68 |
62
|
simprd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ◡ ( 𝑆 ‘ 𝐶 ) = ( 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) ) ) |
| 69 |
67 10 68
|
3eqtr4rd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ◡ ( 𝑆 ‘ 𝐶 ) = ( 𝑆 ‘ 𝐶 ) ) |
| 70 |
63 69
|
jca |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ◡ ( 𝑆 ‘ 𝐶 ) = ( 𝑆 ‘ 𝐶 ) ) ) |