| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ifeqeqx.1 |
⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝐶 ) |
| 2 |
|
ifeqeqx.2 |
⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝑎 ) |
| 3 |
|
ifeqeqx.3 |
⊢ ( 𝑥 = 𝑋 → ( 𝜒 ↔ 𝜃 ) ) |
| 4 |
|
ifeqeqx.4 |
⊢ ( 𝑥 = 𝑌 → ( 𝜒 ↔ 𝜓 ) ) |
| 5 |
|
ifeqeqx.5 |
⊢ ( 𝜑 → 𝑎 = 𝐶 ) |
| 6 |
|
ifeqeqx.6 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |
| 7 |
|
ifeqeqx.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 8 |
|
ifeqeqx.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑊 ) |
| 9 |
|
eqeq2 |
⊢ ( 𝐴 = if ( 𝜒 , 𝐴 , 𝐵 ) → ( 𝑎 = 𝐴 ↔ 𝑎 = if ( 𝜒 , 𝐴 , 𝐵 ) ) ) |
| 10 |
|
eqeq2 |
⊢ ( 𝐵 = if ( 𝜒 , 𝐴 , 𝐵 ) → ( 𝑎 = 𝐵 ↔ 𝑎 = if ( 𝜒 , 𝐴 , 𝐵 ) ) ) |
| 11 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ 𝜒 ) → 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) |
| 12 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ 𝜒 ) → 𝜑 ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ 𝜒 ) → 𝜒 ) |
| 14 |
|
sbceq1a |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝜒 ↔ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
| 15 |
14
|
biimpd |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝜒 → [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
| 16 |
11 13 15
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ 𝜒 ) → [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) |
| 17 |
|
dfsbcq |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( [ 𝑋 / 𝑥 ] 𝜒 ↔ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
| 18 |
|
csbeq1 |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) |
| 19 |
18
|
eqeq2d |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ↔ 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) ) |
| 20 |
17 19
|
imbi12d |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ( [ 𝑋 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ↔ ( [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) ) ) |
| 21 |
|
dfsbcq |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( [ 𝑌 / 𝑥 ] 𝜒 ↔ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
| 22 |
|
csbeq1 |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) |
| 23 |
22
|
eqeq2d |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ↔ 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) ) |
| 24 |
21 23
|
imbi12d |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ( [ 𝑌 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ↔ ( [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) ) ) |
| 25 |
|
nfcvd |
⊢ ( 𝑋 ∈ 𝑊 → Ⅎ 𝑥 𝐶 ) |
| 26 |
25 1
|
csbiegf |
⊢ ( 𝑋 ∈ 𝑊 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 = 𝐶 ) |
| 27 |
8 26
|
syl |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 = 𝐶 ) |
| 28 |
27 5
|
eqtr4d |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 = 𝑎 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 = 𝑎 ) |
| 30 |
29
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) |
| 31 |
30
|
a1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( [ 𝑋 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 32 |
|
pm3.24 |
⊢ ¬ ( 𝜓 ∧ ¬ 𝜓 ) |
| 33 |
4
|
sbcieg |
⊢ ( 𝑌 ∈ 𝑉 → ( [ 𝑌 / 𝑥 ] 𝜒 ↔ 𝜓 ) ) |
| 34 |
7 33
|
syl |
⊢ ( 𝜑 → ( [ 𝑌 / 𝑥 ] 𝜒 ↔ 𝜓 ) ) |
| 35 |
34
|
anbi1d |
⊢ ( 𝜑 → ( ( [ 𝑌 / 𝑥 ] 𝜒 ∧ ¬ 𝜓 ) ↔ ( 𝜓 ∧ ¬ 𝜓 ) ) ) |
| 36 |
32 35
|
mtbiri |
⊢ ( 𝜑 → ¬ ( [ 𝑌 / 𝑥 ] 𝜒 ∧ ¬ 𝜓 ) ) |
| 37 |
36
|
pm2.21d |
⊢ ( 𝜑 → ( ( [ 𝑌 / 𝑥 ] 𝜒 ∧ ¬ 𝜓 ) → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 38 |
37
|
imp |
⊢ ( ( 𝜑 ∧ ( [ 𝑌 / 𝑥 ] 𝜒 ∧ ¬ 𝜓 ) ) → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) |
| 39 |
38
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) ∧ [ 𝑌 / 𝑥 ] 𝜒 ) → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) |
| 40 |
39
|
ex |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ( [ 𝑌 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 41 |
20 24 31 40
|
ifbothda |
⊢ ( 𝜑 → ( [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) ) |
| 42 |
12 16 41
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ 𝜒 ) → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) |
| 43 |
|
csbeq1a |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → 𝐴 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) |
| 44 |
43
|
eqeq2d |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = 𝐴 ↔ 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) ) |
| 45 |
44
|
biimprd |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 → 𝑎 = 𝐴 ) ) |
| 46 |
11 42 45
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ 𝜒 ) → 𝑎 = 𝐴 ) |
| 47 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ ¬ 𝜒 ) → 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) |
| 48 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ ¬ 𝜒 ) → 𝜑 ) |
| 49 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ ¬ 𝜒 ) → ¬ 𝜒 ) |
| 50 |
14
|
notbid |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ¬ 𝜒 ↔ ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
| 51 |
50
|
biimpd |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ¬ 𝜒 → ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
| 52 |
47 49 51
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ ¬ 𝜒 ) → ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) |
| 53 |
17
|
notbid |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ¬ [ 𝑋 / 𝑥 ] 𝜒 ↔ ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
| 54 |
|
csbeq1 |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) |
| 55 |
54
|
eqeq2d |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ↔ 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
| 56 |
53 55
|
imbi12d |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ( ¬ [ 𝑋 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ↔ ( ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) ) |
| 57 |
21
|
notbid |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ¬ [ 𝑌 / 𝑥 ] 𝜒 ↔ ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
| 58 |
|
csbeq1 |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) |
| 59 |
58
|
eqeq2d |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ↔ 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
| 60 |
57 59
|
imbi12d |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ( ¬ [ 𝑌 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ↔ ( ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) ) |
| 61 |
3
|
sbcieg |
⊢ ( 𝑋 ∈ 𝑊 → ( [ 𝑋 / 𝑥 ] 𝜒 ↔ 𝜃 ) ) |
| 62 |
8 61
|
syl |
⊢ ( 𝜑 → ( [ 𝑋 / 𝑥 ] 𝜒 ↔ 𝜃 ) ) |
| 63 |
62
|
notbid |
⊢ ( 𝜑 → ( ¬ [ 𝑋 / 𝑥 ] 𝜒 ↔ ¬ 𝜃 ) ) |
| 64 |
63
|
biimpd |
⊢ ( 𝜑 → ( ¬ [ 𝑋 / 𝑥 ] 𝜒 → ¬ 𝜃 ) ) |
| 65 |
6
|
ex |
⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |
| 66 |
64 65
|
nsyld |
⊢ ( 𝜑 → ( ¬ [ 𝑋 / 𝑥 ] 𝜒 → ¬ 𝜓 ) ) |
| 67 |
66
|
anim2d |
⊢ ( 𝜑 → ( ( 𝜓 ∧ ¬ [ 𝑋 / 𝑥 ] 𝜒 ) → ( 𝜓 ∧ ¬ 𝜓 ) ) ) |
| 68 |
32 67
|
mtoi |
⊢ ( 𝜑 → ¬ ( 𝜓 ∧ ¬ [ 𝑋 / 𝑥 ] 𝜒 ) ) |
| 69 |
68
|
pm2.21d |
⊢ ( 𝜑 → ( ( 𝜓 ∧ ¬ [ 𝑋 / 𝑥 ] 𝜒 ) → 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 70 |
69
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ¬ [ 𝑋 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 71 |
|
nfcvd |
⊢ ( 𝑌 ∈ 𝑉 → Ⅎ 𝑥 𝑎 ) |
| 72 |
71 2
|
csbiegf |
⊢ ( 𝑌 ∈ 𝑉 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 = 𝑎 ) |
| 73 |
7 72
|
syl |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 = 𝑎 ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 = 𝑎 ) |
| 75 |
74
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 76 |
75
|
a1d |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ( ¬ [ 𝑌 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 77 |
56 60 70 76
|
ifbothda |
⊢ ( 𝜑 → ( ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
| 78 |
48 52 77
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ ¬ 𝜒 ) → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) |
| 79 |
|
csbeq1a |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → 𝐵 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) |
| 80 |
79
|
eqeq2d |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = 𝐵 ↔ 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
| 81 |
80
|
biimprd |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 → 𝑎 = 𝐵 ) ) |
| 82 |
47 78 81
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ ¬ 𝜒 ) → 𝑎 = 𝐵 ) |
| 83 |
9 10 46 82
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) → 𝑎 = if ( 𝜒 , 𝐴 , 𝐵 ) ) |