| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ifeqeqx.1 |
|
| 2 |
|
ifeqeqx.2 |
|
| 3 |
|
ifeqeqx.3 |
|
| 4 |
|
ifeqeqx.4 |
|
| 5 |
|
ifeqeqx.5 |
|
| 6 |
|
ifeqeqx.6 |
|
| 7 |
|
ifeqeqx.y |
|
| 8 |
|
ifeqeqx.x |
|
| 9 |
|
eqeq2 |
|
| 10 |
|
eqeq2 |
|
| 11 |
|
simplr |
|
| 12 |
|
simpll |
|
| 13 |
|
simpr |
|
| 14 |
|
sbceq1a |
|
| 15 |
14
|
biimpd |
|
| 16 |
11 13 15
|
sylc |
|
| 17 |
|
dfsbcq |
|
| 18 |
|
csbeq1 |
|
| 19 |
18
|
eqeq2d |
|
| 20 |
17 19
|
imbi12d |
|
| 21 |
|
dfsbcq |
|
| 22 |
|
csbeq1 |
|
| 23 |
22
|
eqeq2d |
|
| 24 |
21 23
|
imbi12d |
|
| 25 |
|
nfcvd |
|
| 26 |
25 1
|
csbiegf |
|
| 27 |
8 26
|
syl |
|
| 28 |
27 5
|
eqtr4d |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
eqcomd |
|
| 31 |
30
|
a1d |
|
| 32 |
|
pm3.24 |
|
| 33 |
4
|
sbcieg |
|
| 34 |
7 33
|
syl |
|
| 35 |
34
|
anbi1d |
|
| 36 |
32 35
|
mtbiri |
|
| 37 |
36
|
pm2.21d |
|
| 38 |
37
|
imp |
|
| 39 |
38
|
anass1rs |
|
| 40 |
39
|
ex |
|
| 41 |
20 24 31 40
|
ifbothda |
|
| 42 |
12 16 41
|
sylc |
|
| 43 |
|
csbeq1a |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
44
|
biimprd |
|
| 46 |
11 42 45
|
sylc |
|
| 47 |
|
simplr |
|
| 48 |
|
simpll |
|
| 49 |
|
simpr |
|
| 50 |
14
|
notbid |
|
| 51 |
50
|
biimpd |
|
| 52 |
47 49 51
|
sylc |
|
| 53 |
17
|
notbid |
|
| 54 |
|
csbeq1 |
|
| 55 |
54
|
eqeq2d |
|
| 56 |
53 55
|
imbi12d |
|
| 57 |
21
|
notbid |
|
| 58 |
|
csbeq1 |
|
| 59 |
58
|
eqeq2d |
|
| 60 |
57 59
|
imbi12d |
|
| 61 |
3
|
sbcieg |
|
| 62 |
8 61
|
syl |
|
| 63 |
62
|
notbid |
|
| 64 |
63
|
biimpd |
|
| 65 |
6
|
ex |
|
| 66 |
64 65
|
nsyld |
|
| 67 |
66
|
anim2d |
|
| 68 |
32 67
|
mtoi |
|
| 69 |
68
|
pm2.21d |
|
| 70 |
69
|
expdimp |
|
| 71 |
|
nfcvd |
|
| 72 |
71 2
|
csbiegf |
|
| 73 |
7 72
|
syl |
|
| 74 |
73
|
adantr |
|
| 75 |
74
|
eqcomd |
|
| 76 |
75
|
a1d |
|
| 77 |
56 60 70 76
|
ifbothda |
|
| 78 |
48 52 77
|
sylc |
|
| 79 |
|
csbeq1a |
|
| 80 |
79
|
eqeq2d |
|
| 81 |
80
|
biimprd |
|
| 82 |
47 78 81
|
sylc |
|
| 83 |
9 10 46 82
|
ifbothda |
|