| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ballotth.m |  |-  M e. NN | 
						
							| 2 |  | ballotth.n |  |-  N e. NN | 
						
							| 3 |  | ballotth.o |  |-  O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } | 
						
							| 4 |  | ballotth.p |  |-  P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) | 
						
							| 5 |  | ballotth.f |  |-  F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) | 
						
							| 6 |  | ballotth.e |  |-  E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } | 
						
							| 7 |  | ballotth.mgtn |  |-  N < M | 
						
							| 8 |  | ballotth.i |  |-  I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) | 
						
							| 9 |  | ballotth.s |  |-  S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) ) | 
						
							| 10 |  | ballotth.r |  |-  R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) | 
						
							| 11 |  | ballotlemg |  |-  .^ = ( u e. Fin , v e. Fin |-> ( ( # ` ( v i^i u ) ) - ( # ` ( v \ u ) ) ) ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 | ballotlemsf1o |  |-  ( C e. ( O \ E ) -> ( ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-onto-> ( 1 ... ( M + N ) ) /\ `' ( S ` C ) = ( S ` C ) ) ) | 
						
							| 13 | 12 | simpld |  |-  ( C e. ( O \ E ) -> ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-onto-> ( 1 ... ( M + N ) ) ) | 
						
							| 14 |  | f1of1 |  |-  ( ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-onto-> ( 1 ... ( M + N ) ) -> ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-> ( 1 ... ( M + N ) ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( C e. ( O \ E ) -> ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-> ( 1 ... ( M + N ) ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-> ( 1 ... ( M + N ) ) ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 | ballotlemiex |  |-  ( C e. ( O \ E ) -> ( ( I ` C ) e. ( 1 ... ( M + N ) ) /\ ( ( F ` C ) ` ( I ` C ) ) = 0 ) ) | 
						
							| 18 | 17 | simpld |  |-  ( C e. ( O \ E ) -> ( I ` C ) e. ( 1 ... ( M + N ) ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( I ` C ) e. ( 1 ... ( M + N ) ) ) | 
						
							| 20 |  | elfzuz3 |  |-  ( ( I ` C ) e. ( 1 ... ( M + N ) ) -> ( M + N ) e. ( ZZ>= ` ( I ` C ) ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( M + N ) e. ( ZZ>= ` ( I ` C ) ) ) | 
						
							| 22 |  | elfzuz3 |  |-  ( J e. ( 1 ... ( I ` C ) ) -> ( I ` C ) e. ( ZZ>= ` J ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( I ` C ) e. ( ZZ>= ` J ) ) | 
						
							| 24 |  | uztrn |  |-  ( ( ( M + N ) e. ( ZZ>= ` ( I ` C ) ) /\ ( I ` C ) e. ( ZZ>= ` J ) ) -> ( M + N ) e. ( ZZ>= ` J ) ) | 
						
							| 25 | 21 23 24 | syl2anc |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( M + N ) e. ( ZZ>= ` J ) ) | 
						
							| 26 |  | fzss2 |  |-  ( ( M + N ) e. ( ZZ>= ` J ) -> ( 1 ... J ) C_ ( 1 ... ( M + N ) ) ) | 
						
							| 27 | 25 26 | syl |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( 1 ... J ) C_ ( 1 ... ( M + N ) ) ) | 
						
							| 28 |  | ssinss1 |  |-  ( ( 1 ... J ) C_ ( 1 ... ( M + N ) ) -> ( ( 1 ... J ) i^i ( R ` C ) ) C_ ( 1 ... ( M + N ) ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( 1 ... J ) i^i ( R ` C ) ) C_ ( 1 ... ( M + N ) ) ) | 
						
							| 30 |  | f1ores |  |-  ( ( ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-> ( 1 ... ( M + N ) ) /\ ( ( 1 ... J ) i^i ( R ` C ) ) C_ ( 1 ... ( M + N ) ) ) -> ( ( S ` C ) |` ( ( 1 ... J ) i^i ( R ` C ) ) ) : ( ( 1 ... J ) i^i ( R ` C ) ) -1-1-onto-> ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) ) | 
						
							| 31 | 16 29 30 | syl2anc |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( S ` C ) |` ( ( 1 ... J ) i^i ( R ` C ) ) ) : ( ( 1 ... J ) i^i ( R ` C ) ) -1-1-onto-> ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) ) | 
						
							| 32 |  | ovex |  |-  ( 1 ... J ) e. _V | 
						
							| 33 | 32 | inex1 |  |-  ( ( 1 ... J ) i^i ( R ` C ) ) e. _V | 
						
							| 34 | 33 | f1oen |  |-  ( ( ( S ` C ) |` ( ( 1 ... J ) i^i ( R ` C ) ) ) : ( ( 1 ... J ) i^i ( R ` C ) ) -1-1-onto-> ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) -> ( ( 1 ... J ) i^i ( R ` C ) ) ~~ ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) ) | 
						
							| 35 |  | hasheni |  |-  ( ( ( 1 ... J ) i^i ( R ` C ) ) ~~ ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) -> ( # ` ( ( 1 ... J ) i^i ( R ` C ) ) ) = ( # ` ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) ) ) | 
						
							| 36 | 31 34 35 | 3syl |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( # ` ( ( 1 ... J ) i^i ( R ` C ) ) ) = ( # ` ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) ) ) | 
						
							| 37 | 27 | ssdifssd |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( 1 ... J ) \ ( R ` C ) ) C_ ( 1 ... ( M + N ) ) ) | 
						
							| 38 |  | f1ores |  |-  ( ( ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-> ( 1 ... ( M + N ) ) /\ ( ( 1 ... J ) \ ( R ` C ) ) C_ ( 1 ... ( M + N ) ) ) -> ( ( S ` C ) |` ( ( 1 ... J ) \ ( R ` C ) ) ) : ( ( 1 ... J ) \ ( R ` C ) ) -1-1-onto-> ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) ) | 
						
							| 39 | 16 37 38 | syl2anc |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( S ` C ) |` ( ( 1 ... J ) \ ( R ` C ) ) ) : ( ( 1 ... J ) \ ( R ` C ) ) -1-1-onto-> ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) ) | 
						
							| 40 |  | difexg |  |-  ( ( 1 ... J ) e. _V -> ( ( 1 ... J ) \ ( R ` C ) ) e. _V ) | 
						
							| 41 | 32 40 | ax-mp |  |-  ( ( 1 ... J ) \ ( R ` C ) ) e. _V | 
						
							| 42 | 41 | f1oen |  |-  ( ( ( S ` C ) |` ( ( 1 ... J ) \ ( R ` C ) ) ) : ( ( 1 ... J ) \ ( R ` C ) ) -1-1-onto-> ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) -> ( ( 1 ... J ) \ ( R ` C ) ) ~~ ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) ) | 
						
							| 43 |  | hasheni |  |-  ( ( ( 1 ... J ) \ ( R ` C ) ) ~~ ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) -> ( # ` ( ( 1 ... J ) \ ( R ` C ) ) ) = ( # ` ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) ) ) | 
						
							| 44 | 39 42 43 | 3syl |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( # ` ( ( 1 ... J ) \ ( R ` C ) ) ) = ( # ` ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) ) ) | 
						
							| 45 | 36 44 | oveq12d |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( # ` ( ( 1 ... J ) i^i ( R ` C ) ) ) - ( # ` ( ( 1 ... J ) \ ( R ` C ) ) ) ) = ( ( # ` ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) ) - ( # ` ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) ) ) ) | 
						
							| 46 | 1 2 3 4 5 6 7 8 9 10 | ballotlemro |  |-  ( C e. ( O \ E ) -> ( R ` C ) e. O ) | 
						
							| 47 | 46 | adantr |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( R ` C ) e. O ) | 
						
							| 48 |  | elfzelz |  |-  ( J e. ( 1 ... ( I ` C ) ) -> J e. ZZ ) | 
						
							| 49 | 48 | adantl |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> J e. ZZ ) | 
						
							| 50 | 1 2 3 4 5 47 49 | ballotlemfval |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( F ` ( R ` C ) ) ` J ) = ( ( # ` ( ( 1 ... J ) i^i ( R ` C ) ) ) - ( # ` ( ( 1 ... J ) \ ( R ` C ) ) ) ) ) | 
						
							| 51 |  | fzfi |  |-  ( 1 ... ( M + N ) ) e. Fin | 
						
							| 52 |  | eldifi |  |-  ( C e. ( O \ E ) -> C e. O ) | 
						
							| 53 | 1 2 3 | ballotlemelo |  |-  ( C e. O <-> ( C C_ ( 1 ... ( M + N ) ) /\ ( # ` C ) = M ) ) | 
						
							| 54 | 53 | simplbi |  |-  ( C e. O -> C C_ ( 1 ... ( M + N ) ) ) | 
						
							| 55 | 52 54 | syl |  |-  ( C e. ( O \ E ) -> C C_ ( 1 ... ( M + N ) ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> C C_ ( 1 ... ( M + N ) ) ) | 
						
							| 57 |  | ssfi |  |-  ( ( ( 1 ... ( M + N ) ) e. Fin /\ C C_ ( 1 ... ( M + N ) ) ) -> C e. Fin ) | 
						
							| 58 | 51 56 57 | sylancr |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> C e. Fin ) | 
						
							| 59 |  | fzfid |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( ( S ` C ) ` J ) ... ( I ` C ) ) e. Fin ) | 
						
							| 60 | 1 2 3 4 5 6 7 8 9 10 11 | ballotlemgval |  |-  ( ( C e. Fin /\ ( ( ( S ` C ) ` J ) ... ( I ` C ) ) e. Fin ) -> ( C .^ ( ( ( S ` C ) ` J ) ... ( I ` C ) ) ) = ( ( # ` ( ( ( ( S ` C ) ` J ) ... ( I ` C ) ) i^i C ) ) - ( # ` ( ( ( ( S ` C ) ` J ) ... ( I ` C ) ) \ C ) ) ) ) | 
						
							| 61 | 58 59 60 | syl2anc |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( C .^ ( ( ( S ` C ) ` J ) ... ( I ` C ) ) ) = ( ( # ` ( ( ( ( S ` C ) ` J ) ... ( I ` C ) ) i^i C ) ) - ( # ` ( ( ( ( S ` C ) ` J ) ... ( I ` C ) ) \ C ) ) ) ) | 
						
							| 62 |  | dff1o3 |  |-  ( ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-onto-> ( 1 ... ( M + N ) ) <-> ( ( S ` C ) : ( 1 ... ( M + N ) ) -onto-> ( 1 ... ( M + N ) ) /\ Fun `' ( S ` C ) ) ) | 
						
							| 63 | 62 | simprbi |  |-  ( ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-onto-> ( 1 ... ( M + N ) ) -> Fun `' ( S ` C ) ) | 
						
							| 64 |  | imain |  |-  ( Fun `' ( S ` C ) -> ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) = ( ( ( S ` C ) " ( 1 ... J ) ) i^i ( ( S ` C ) " ( R ` C ) ) ) ) | 
						
							| 65 | 13 63 64 | 3syl |  |-  ( C e. ( O \ E ) -> ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) = ( ( ( S ` C ) " ( 1 ... J ) ) i^i ( ( S ` C ) " ( R ` C ) ) ) ) | 
						
							| 66 | 65 | adantr |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) = ( ( ( S ` C ) " ( 1 ... J ) ) i^i ( ( S ` C ) " ( R ` C ) ) ) ) | 
						
							| 67 | 1 2 3 4 5 6 7 8 9 | ballotlemsima |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( S ` C ) " ( 1 ... J ) ) = ( ( ( S ` C ) ` J ) ... ( I ` C ) ) ) | 
						
							| 68 | 1 2 3 4 5 6 7 8 9 10 | ballotlemscr |  |-  ( C e. ( O \ E ) -> ( ( S ` C ) " ( R ` C ) ) = C ) | 
						
							| 69 | 68 | adantr |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( S ` C ) " ( R ` C ) ) = C ) | 
						
							| 70 | 67 69 | ineq12d |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( ( S ` C ) " ( 1 ... J ) ) i^i ( ( S ` C ) " ( R ` C ) ) ) = ( ( ( ( S ` C ) ` J ) ... ( I ` C ) ) i^i C ) ) | 
						
							| 71 | 66 70 | eqtrd |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) = ( ( ( ( S ` C ) ` J ) ... ( I ` C ) ) i^i C ) ) | 
						
							| 72 | 71 | fveq2d |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( # ` ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) ) = ( # ` ( ( ( ( S ` C ) ` J ) ... ( I ` C ) ) i^i C ) ) ) | 
						
							| 73 |  | imadif |  |-  ( Fun `' ( S ` C ) -> ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) = ( ( ( S ` C ) " ( 1 ... J ) ) \ ( ( S ` C ) " ( R ` C ) ) ) ) | 
						
							| 74 | 13 63 73 | 3syl |  |-  ( C e. ( O \ E ) -> ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) = ( ( ( S ` C ) " ( 1 ... J ) ) \ ( ( S ` C ) " ( R ` C ) ) ) ) | 
						
							| 75 | 74 | adantr |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) = ( ( ( S ` C ) " ( 1 ... J ) ) \ ( ( S ` C ) " ( R ` C ) ) ) ) | 
						
							| 76 | 67 69 | difeq12d |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( ( S ` C ) " ( 1 ... J ) ) \ ( ( S ` C ) " ( R ` C ) ) ) = ( ( ( ( S ` C ) ` J ) ... ( I ` C ) ) \ C ) ) | 
						
							| 77 | 75 76 | eqtrd |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) = ( ( ( ( S ` C ) ` J ) ... ( I ` C ) ) \ C ) ) | 
						
							| 78 | 77 | fveq2d |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( # ` ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) ) = ( # ` ( ( ( ( S ` C ) ` J ) ... ( I ` C ) ) \ C ) ) ) | 
						
							| 79 | 72 78 | oveq12d |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( # ` ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) ) - ( # ` ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) ) ) = ( ( # ` ( ( ( ( S ` C ) ` J ) ... ( I ` C ) ) i^i C ) ) - ( # ` ( ( ( ( S ` C ) ` J ) ... ( I ` C ) ) \ C ) ) ) ) | 
						
							| 80 | 61 79 | eqtr4d |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( C .^ ( ( ( S ` C ) ` J ) ... ( I ` C ) ) ) = ( ( # ` ( ( S ` C ) " ( ( 1 ... J ) i^i ( R ` C ) ) ) ) - ( # ` ( ( S ` C ) " ( ( 1 ... J ) \ ( R ` C ) ) ) ) ) ) | 
						
							| 81 | 45 50 80 | 3eqtr4d |  |-  ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( I ` C ) ) ) -> ( ( F ` ( R ` C ) ) ` J ) = ( C .^ ( ( ( S ` C ) ` J ) ... ( I ` C ) ) ) ) |