Metamath Proof Explorer


Theorem basresposfo

Description: The base function restricted to the class of posets maps the class of posets onto the universal class. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion basresposfo Base Poset : Poset onto V

Proof

Step Hyp Ref Expression
1 basfn Base Fn V
2 ssv Poset V
3 fnssres Base Fn V Poset V Base Poset Fn Poset
4 1 2 3 mp2an Base Poset Fn Poset
5 dffn2 Base Poset Fn Poset Base Poset : Poset V
6 4 5 mpbi Base Poset : Poset V
7 exbaspos b V k Poset b = Base k
8 fvres k Poset Base Poset k = Base k
9 8 eqeq2d k Poset b = Base Poset k b = Base k
10 9 rexbiia k Poset b = Base Poset k k Poset b = Base k
11 7 10 sylibr b V k Poset b = Base Poset k
12 11 rgen b V k Poset b = Base Poset k
13 dffo3 Base Poset : Poset onto V Base Poset : Poset V b V k Poset b = Base Poset k
14 6 12 13 mpbir2an Base Poset : Poset onto V