Metamath Proof Explorer


Theorem bccn0

Description: Generalized binomial coefficient: C choose 0 . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypothesis bccn0.c φC
Assertion bccn0 φCC𝑐0=1

Proof

Step Hyp Ref Expression
1 bccn0.c φC
2 0nn0 00
3 2 a1i φ00
4 1 3 bccval φCC𝑐0=C0_0!
5 fallfac0 CC0_=1
6 1 5 syl φC0_=1
7 fac0 0!=1
8 7 a1i φ0!=1
9 6 8 oveq12d φC0_0!=11
10 1div1e1 11=1
11 9 10 eqtrdi φC0_0!=1
12 4 11 eqtrd φCC𝑐0=1