Metamath Proof Explorer


Theorem bccn1

Description: Generalized binomial coefficient: C choose 1 . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypothesis bccn0.c φC
Assertion bccn1 φCC𝑐1=C

Proof

Step Hyp Ref Expression
1 bccn0.c φC
2 0nn0 00
3 2 a1i φ00
4 1 3 bccp1k φCC𝑐0+1=CC𝑐0C00+1
5 0p1e1 0+1=1
6 5 oveq2i CC𝑐0+1=CC𝑐1
7 6 a1i φCC𝑐0+1=CC𝑐1
8 1 bccn0 φCC𝑐0=1
9 1 subid1d φC0=C
10 5 a1i φ0+1=1
11 9 10 oveq12d φC00+1=C1
12 1 div1d φC1=C
13 11 12 eqtrd φC00+1=C
14 8 13 oveq12d φCC𝑐0C00+1=1C
15 4 7 14 3eqtr3d φCC𝑐1=1C
16 1 mullidd φ1C=C
17 15 16 eqtrd φCC𝑐1=C