Metamath Proof Explorer


Theorem bcctr

Description: Value of the central binomial coefficient. (Contributed by Mario Carneiro, 13-Mar-2014)

Ref Expression
Assertion bcctr N0(2 NN)=2 N!N!N!

Proof

Step Hyp Ref Expression
1 fzctr N0N02 N
2 bcval2 N02 N(2 NN)=2 N!2 NN!N!
3 1 2 syl N0(2 NN)=2 N!2 NN!N!
4 nn0cn N0N
5 4 2timesd N02 N=N+N
6 4 4 5 mvrladdd N02 NN=N
7 6 fveq2d N02 NN!=N!
8 7 oveq1d N02 NN!N!=N!N!
9 8 oveq2d N02 N!2 NN!N!=2 N!N!N!
10 3 9 eqtrd N0(2 NN)=2 N!N!N!