Metamath Proof Explorer


Theorem bcfallfac

Description: Binomial coefficient in terms of falling factorials. (Contributed by Scott Fenton, 20-Mar-2018)

Ref Expression
Assertion bcfallfac K0N(NK)=NK_K!

Proof

Step Hyp Ref Expression
1 elfz3nn0 K0NN0
2 1 faccld K0NN!
3 2 nncnd K0NN!
4 fznn0sub K0NNK0
5 4 faccld K0NNK!
6 5 nncnd K0NNK!
7 elfznn0 K0NK0
8 7 faccld K0NK!
9 8 nncnd K0NK!
10 5 nnne0d K0NNK!0
11 8 nnne0d K0NK!0
12 3 6 9 10 11 divdiv1d K0NN!NK!K!=N!NK!K!
13 fallfacval4 K0NNK_=N!NK!
14 13 oveq1d K0NNK_K!=N!NK!K!
15 bcval2 K0N(NK)=N!NK!K!
16 12 14 15 3eqtr4rd K0N(NK)=NK_K!