Metamath Proof Explorer


Theorem bcnp1n

Description: Binomial coefficient: N + 1 choose N . (Contributed by NM, 20-Jun-2005) (Revised by Mario Carneiro, 8-Nov-2013)

Ref Expression
Assertion bcnp1n N0(N+1N)=N+1

Proof

Step Hyp Ref Expression
1 peano2nn0 N0N+10
2 nn0z N0N
3 bccmpl N+10N(N+1N)=(N+1N+1-N)
4 1 2 3 syl2anc N0(N+1N)=(N+1N+1-N)
5 nn0cn N0N
6 ax-1cn 1
7 pncan2 N1N+1-N=1
8 5 6 7 sylancl N0N+1-N=1
9 8 oveq2d N0(N+1N+1-N)=(N+11)
10 bcn1 N+10(N+11)=N+1
11 1 10 syl N0(N+11)=N+1
12 4 9 11 3eqtrd N0(N+1N)=N+1