Metamath Proof Explorer


Theorem bcpascm1

Description: Pascal's rule for the binomial coefficient, generalized to all integers K , shifted down by 1. (Contributed by AV, 8-Sep-2019)

Ref Expression
Assertion bcpascm1 N K ( N 1 K) + ( N 1 K 1 ) = ( N K)

Proof

Step Hyp Ref Expression
1 nnm1nn0 N N 1 0
2 bcpasc N 1 0 K ( N 1 K) + ( N 1 K 1 ) = ( N - 1 + 1 K)
3 1 2 sylan N K ( N 1 K) + ( N 1 K 1 ) = ( N - 1 + 1 K)
4 nncn N N
5 npcan1 N N - 1 + 1 = N
6 4 5 syl N N - 1 + 1 = N
7 6 adantr N K N - 1 + 1 = N
8 7 oveq1d N K ( N - 1 + 1 K) = ( N K)
9 3 8 eqtrd N K ( N 1 K) + ( N 1 K 1 ) = ( N K)