Metamath Proof Explorer


Theorem bcpascm1

Description: Pascal's rule for the binomial coefficient, generalized to all integers K , shifted down by 1. (Contributed by AV, 8-Sep-2019)

Ref Expression
Assertion bcpascm1 NK(N1K)+(N1K1)=(NK)

Proof

Step Hyp Ref Expression
1 nnm1nn0 NN10
2 bcpasc N10K(N1K)+(N1K1)=(N-1+1K)
3 1 2 sylan NK(N1K)+(N1K1)=(N-1+1K)
4 nncn NN
5 npcan1 NN-1+1=N
6 4 5 syl NN-1+1=N
7 6 adantr NKN-1+1=N
8 7 oveq1d NK(N-1+1K)=(NK)
9 3 8 eqtrd NK(N1K)+(N1K1)=(NK)