Metamath Proof Explorer


Theorem bcval2

Description: Value of the binomial coefficient, N choose K , in its standard domain. (Contributed by NM, 9-Jun-2005) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion bcval2 K0N(NK)=N!NK!K!

Proof

Step Hyp Ref Expression
1 elfz3nn0 K0NN0
2 elfzelz K0NK
3 bcval N0K(NK)=ifK0NN!NK!K!0
4 1 2 3 syl2anc K0N(NK)=ifK0NN!NK!K!0
5 iftrue K0NifK0NN!NK!K!0=N!NK!K!
6 4 5 eqtrd K0N(NK)=N!NK!K!