Metamath Proof Explorer


Theorem bcval3

Description: Value of the binomial coefficient, N choose K , outside of its standard domain. Remark in Gleason p. 295. (Contributed by NM, 14-Jul-2005) (Revised by Mario Carneiro, 8-Nov-2013)

Ref Expression
Assertion bcval3 N0K¬K0N(NK)=0

Proof

Step Hyp Ref Expression
1 bcval N0K(NK)=ifK0NN!NK!K!0
2 1 3adant3 N0K¬K0N(NK)=ifK0NN!NK!K!0
3 iffalse ¬K0NifK0NN!NK!K!0=0
4 3 3ad2ant3 N0K¬K0NifK0NN!NK!K!0=0
5 2 4 eqtrd N0K¬K0N(NK)=0